Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/Old/scg_dbn.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% to test whether scg inference engine can handl dynameic BN % Make a linear dynamical system % X1 -> X2 % | | % v v % Y1 Y2 intra = zeros(2); intra(1,2) = 1; inter = zeros(2); inter(1,1) = 1; n = 2; X = 2; % size of hidden state Y = 2; % size of observable state ns = [X Y]; dnodes = []; onodes = [2]; eclass1 = [1 2]; eclass2 = [3 2]; bnet = mk_dbn(intra, inter, ns, dnodes, eclass1, eclass2); x0 = rand(X,1); V0 = eye(X); C0 = rand(Y,X); R0 = eye(Y); A0 = rand(X,X); Q0 = eye(X); bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0); %bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0, 'full', 'untied', 'clamped_mean'); %bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0, 'full', 'untied', 'clamped_mean'); bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0); bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0); T = 5; % fixed length sequences clear engine; %engine{1} = kalman_inf_engine(bnet, onodes); engine{1} = scg_unrolled_dbn_inf_engine(bnet, T, onodes); engine{2} = jtree_unrolled_dbn_inf_engine(bnet, T); N = length(engine); % inference ev = sample_dbn(bnet, T); evidence = cell(n,T); evidence(onodes,:) = ev(onodes, :); t = 2; query = [1 3]; m = cell(1, N); ll = zeros(1, N); engine{1} = enter_evidence(engine{1}, evidence); [engine{2}, ll(2)] = enter_evidence(engine{2}, evidence); m{1} = marginal_nodes(engine{1}, query); m{2} = marginal_nodes(engine{2}, query, t); % compare all engines to engine{1} for i=2:N assert(approxeq(m{1}.mu, m{i}.mu)); assert(approxeq(m{1}.Sigma, m{i}.Sigma)); % assert(approxeq(ll(1), ll(i))); end