Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/Old/kalman1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Make a linear dynamical system % X1 -> X2 % | | % v v % Y1 Y2 intra = zeros(2); intra(1,2) = 1; inter = zeros(2); inter(1,1) = 1; n = 2; X = 2; % size of hidden state Y = 2; % size of observable state ns = [X Y]; dnodes = []; onodes = [2]; eclass1 = [1 2]; eclass2 = [3 2]; bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... 'observed', onodes); x0 = rand(X,1); V0 = eye(X); C0 = rand(Y,X); R0 = eye(Y); A0 = rand(X,X); Q0 = eye(X); bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0, 'cov_prior_weight', 0); bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0, ... 'clamp_mean', 1, 'cov_prior_weight', 0); bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0, ... 'clamp_mean', 1, 'cov_prior_weight', 0); T = 5; % fixed length sequences clear engine; engine{1} = kalman_inf_engine(bnet); engine{2} = jtree_unrolled_dbn_inf_engine(bnet, T); engine{3} = jtree_dbn_inf_engine(bnet); N = length(engine); % inference ev = sample_dbn(bnet, T); evidence = cell(n,T); evidence(onodes,:) = ev(onodes, :); t = 1; query = [1 3]; m = cell(1, N); ll = zeros(1, N); for i=1:N [engine{i}, ll(i)] = enter_evidence(engine{i}, evidence); m{i} = marginal_nodes(engine{i}, query, t); end % compare all engines to engine{1} for i=2:N assert(approxeq(m{1}.mu, m{i}.mu)); assert(approxeq(m{1}.Sigma, m{i}.Sigma)); assert(approxeq(ll(1), ll(i))); end if 0 for i=2:N approxeq(m{1}.mu, m{i}.mu) approxeq(m{1}.Sigma, m{i}.Sigma) approxeq(ll(1), ll(i)) end end % learning ncases = 5; cases = cell(1, ncases); for i=1:ncases ev = sample_dbn(bnet, T); cases{i} = cell(n,T); cases{i}(onodes,:) = ev(onodes, :); end max_iter = 2; bnet2 = cell(1,N); LLtrace = cell(1,N); for i=1:N [bnet2{i}, LLtrace{i}] = learn_params_dbn_em(engine{i}, cases, 'max_iter', max_iter); end for i=1:N temp = bnet2{i}; for e=1:3 CPD{i,e} = struct(temp.CPD{e}); end end for i=2:N assert(approxeq(LLtrace{i}, LLtrace{1})); for e=1:3 assert(approxeq(CPD{i,e}.mean, CPD{1,e}.mean)); assert(approxeq(CPD{i,e}.cov, CPD{1,e}.cov)); assert(approxeq(CPD{i,e}.weights, CPD{1,e}.weights)); end end % Compare to KF toolbox data = zeros(Y, T, ncases); for i=1:ncases data(:,:,i) = cell2num(cases{i}(onodes, :)); end [A2, C2, Q2, R2, x2, V2, LL2trace] = learn_kalman(data, A0, C0, Q0, R0, x0, V0, max_iter); e = 1; assert(approxeq(x2, CPD{e,1}.mean)) assert(approxeq(V2, CPD{e,1}.cov)) assert(approxeq(C2, CPD{e,2}.weights)) assert(approxeq(R2, CPD{e,2}.cov)); assert(approxeq(A2, CPD{e,3}.weights)) assert(approxeq(Q2, CPD{e,3}.cov)); assert(approxeq(LL2trace, LLtrace{1}))