Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/HHMM/mk_hhmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [bnet, Qnodes, Fnodes, Onode] = mk_hhmm(varargin) % MK_HHMM Make a Hierarchical HMM % function [bnet, Qnodes, Fnodes, Onode] = mk_hhmm(...) % % e.g. 3-layer hierarchical HMM where level 1 only connects to level 2 % and the parents of the observed node are levels 2 and 3. % (This DBN is the same as Fig 10 in my tech report.) % % Q1 ----------> Q1 % | \ ^ | % | v / | % | F2 ------/ | % | ^ ^ \ | % | / | \ | % | / | || % v | vv % Q2----| --------> Q2 % /| \ | ^| % / | v | / | % | | F3 --------/ | % | | ^ \ | % | v / v v % | Q3 -----------> Q3 % | | % \ | % v v % O % % % Optional arguments in name/value format [default value in brackets] % % Qsizes - sizes at each level [ none ] % allQ - 1 means level i connects to all Q levels below, 0 means just to i+1 [0] % transprob - transprob{d}(i,k,j) = P(Q(d,t)=j|Q(d,t-1)=i,Q(1:d-1,t)=k) ['leftright'] % startprob - startprob{d}(k,j) = P(Q(d,t)=j|Q(1:d-1,t)=k) ['leftstart'] % termprob - termprob{d}(k,j) = P(F(d,t)=2|Q(1:d-1,t)=k,Q(d,t)=j) for d>1 ['rightstop'] % selfprop - prob of a self transition (termprob default = 1-selfprop) [0.8] % Osize - size of O node % discrete_obs - 1 means O is tabular_CPD, 0 means gaussian_CPD [0] % Oargs - cell array of args to pass to the O CPD [ {} ] % Ops - Q parents of O [Qnodes(end)] % F1 - 1 means level 1 can finish (restart), else there is no F1->Q1 arc [0] % clamp1 - 1 means we clamp the params of the Q nodes in slice 1 (Qt1params) [1] % Note: the Qt1params are startprob, which should be shared with other slices. % However, in the current implementation, the Qt1params will only be estimated % from the initial state of each sequence. % % For d=1, startprob{1}(1,j) is only used in the first slice and % termprob{1} is ignored, since we assume the top level never resets. % Also, transprob{1}(i,j) can be used instead of transprob{1}(i,1,j). % % leftstart means the model always starts in state 1. % rightstop means the model can only finish in its last state (Qsize(d)). % unif means each state is equally like to reach any other % rnd means the transition/starting probs are random (drawn from rand) % % Q1:QD in slice 1 are of type tabular_CPD % Q1:QD in slice 2 are of type hhmmQ_CPD. % F(2:D-1) is of type hhmmF_CPD, FD is of type tabular_CPD. args = varargin; nargs = length(args); % get sizes of nodes and topology Qsizes = []; Osize = []; allQ = 0; Ops = []; F1 = 0; for i=1:2:nargs switch args{i}, case 'Qsizes', Qsizes = args{i+1}; case 'Osize', Osize = args{i+1}; case 'allQ', allQ = args{i+1}; case 'Ops', Ops = args{i+1}; case 'F1', F1 = args{i+1}; end end if isempty(Qsizes), error('must specify Qsizes'); end if Osize==0, error('must specify Osize'); end D = length(Qsizes); Qnodes = 1:D; if isempty(Ops), Ops = Qnodes(end); end [intra, inter, Qnodes, Fnodes, Onode] = mk_hhmm_topo(D, allQ, Ops, F1); ss = length(intra); names = {}; if F1 Fnodes_ndx = Fnodes; else Fnodes_ndx = [-1 Fnodes]; % Fnodes(1) is a dummy index end % set default params discrete_obs = 0; Oargs = {}; startprob = cell(1,D); startprob{1} = 'unif'; for d=2:D startprob{d} = 'leftstart'; end transprob = cell(1,D); transprob{1} = 'unif'; for d=2:D transprob{d} = 'leftright'; end termprob = cell(1,D); for d=2:D termprob{d} = 'rightstop'; end selfprob = 0.8; clamp1 = 1; for i=1:2:nargs switch args{i}, case 'discrete_obs', discrete_obs = args{i+1}; case 'Oargs', Oargs = args{i+1}; case 'startprob', startprob = args{i+1}; case 'transprob', transprob = args{i+1}; case 'termprob', termprob = args{i+1}; case 'selfprob', selfprob = args{i+1}; case 'clamp1', clamp1 = args{i+1}; end end ns = zeros(1,ss); ns(Qnodes) = Qsizes; ns(Onode) = Osize; ns(Fnodes) = 2; dnodes = [Qnodes Fnodes]; if discrete_obs dnodes = [dnodes Onode]; end onodes = [Onode]; bnet = mk_dbn(intra, inter, ns, 'observed', onodes, 'discrete', dnodes, 'names', names); eclass = bnet.equiv_class; for d=1:D if d==1 Qps = []; elseif allQ Qps = Qnodes(1:d-1); else Qps = Qnodes(d-1); end Qpsz = prod(ns(Qps)); Qsz = ns(Qnodes(d)); if isstr(startprob{d}) switch startprob{d} case 'unif', startprob{d} = mk_stochastic(ones(Qpsz, Qsz)); case 'rnd', startprob{d} = mk_stochastic(rand(Qpsz, Qsz)); case 'leftstart', startprob{d} = zeros(Qpsz, Qsz); startprob{d}(:,1) = 1; end end if isstr(transprob{d}) switch transprob{d} case 'unif', transprob{d} = mk_stochastic(ones(Qsz, Qpsz, Qsz)); case 'rnd', transprob{d} = mk_stochastic(rand(Qsz, Qpsz, Qsz)); case 'leftright', LR = mk_leftright_transmat(Qsz, selfprob); temp = repmat(reshape(LR, [1 Qsz Qsz]), [Qpsz 1 1]); % transprob(k,i,j) transprob{d} = permute(temp, [2 1 3]); % now transprob(i,k,j) end end if isstr(termprob{d}) switch termprob{d} case 'unif', termprob{d} = mk_stochastic(ones(Qpsz, Qsz, 2)); case 'rnd', termprob{d} = mk_stochastic(rand(Qpsz, Qsz, 2)); case 'rightstop', %termprob(k,i,t) Might terminate if i=Qsz; will not terminate if i<Qsz stopprob = 1-selfprob; termprob{d} = zeros(Qpsz, Qsz, 2); termprob{d}(:,Qsz,2) = stopprob; termprob{d}(:,Qsz,1) = 1-stopprob; termprob{d}(:,1:(Qsz-1),1) = 1; otherwise, error(['unrecognized termprob ' termprob{d}]) end elseif d>1 % passed in termprob{d}(k,j) temp = termprob{d}; termprob{d} = zeros(Qpsz, Qsz, 2); termprob{d}(:,:,2) = temp; termprob{d}(:,:,1) = ones(Qpsz,Qsz) - temp; end end % SLICE 1 for d=1:D bnet.CPD{eclass(Qnodes(d),1)} = tabular_CPD(bnet, Qnodes(d), 'CPT', startprob{d}, 'adjustable', clamp1); end if F1 d = 1; bnet.CPD{eclass(Fnodes_ndx(d),1)} = hhmmF_CPD(bnet, Fnodes_ndx(d), Qnodes(d), Fnodes_ndx(d+1), ... 'termprob', termprob{d}); end for d=2:D-1 if allQ Qps = Qnodes(1:d-1); else Qps = Qnodes(d-1); end bnet.CPD{eclass(Fnodes_ndx(d),1)} = hhmmF_CPD(bnet, Fnodes_ndx(d), Qnodes(d), Fnodes_ndx(d+1), ... 'Qps', Qps, 'termprob', termprob{d}); end bnet.CPD{eclass(Fnodes_ndx(D),1)} = tabular_CPD(bnet, Fnodes_ndx(D), 'CPT', termprob{D}); if discrete_obs bnet.CPD{eclass(Onode,1)} = tabular_CPD(bnet, Onode, Oargs{:}); else bnet.CPD{eclass(Onode,1)} = gaussian_CPD(bnet, Onode, Oargs{:}); end % SLICE 2 %for d=1:D % bnet.CPD{eclass(Qnodes(d),2)} = hhmmQ_CPD(bnet, Qnodes(d)+ss, Qnodes, d, D, ... % 'startprob', startprob{d}, 'transprob', transprob{d}, ... % 'allQ', allQ); %end d = 1; if F1 bnet.CPD{eclass(Qnodes(d),2)} = hhmmQ_CPD(bnet, Qnodes(d)+ss, 'Fself', Fnodes_ndx(d), ... 'Fbelow', Fnodes_ndx(d+1), ... 'startprob', startprob{d}, 'transprob', transprob{d}); else bnet.CPD{eclass(Qnodes(d),2)} = hhmmQ_CPD(bnet, Qnodes(d)+ss, ... 'Fbelow', Fnodes_ndx(d+1), ... 'startprob', startprob{d}, 'transprob', transprob{d}); end for d=2:D-1 if allQ Qps = Qnodes(1:d-1); else Qps = Qnodes(d-1); end Qps = Qps + ss; % since all in slice 2 bnet.CPD{eclass(Qnodes(d),2)} = hhmmQ_CPD(bnet, Qnodes(d)+ss, 'Fself', Fnodes_ndx(d), ... 'Fbelow', Fnodes_ndx(d+1), 'Qps', Qps, ... 'startprob', startprob{d}, 'transprob', transprob{d}); end d = D; if allQ Qps = Qnodes(1:d-1); else Qps = Qnodes(d-1); end Qps = Qps + ss; % since all in slice 2 bnet.CPD{eclass(Qnodes(d),2)} = hhmmQ_CPD(bnet, Qnodes(d)+ss, 'Fself', Fnodes_ndx(d), ... 'Qps', Qps, ... 'startprob', startprob{d}, 'transprob', transprob{d});