Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/HHMM/Mgram/mgram2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Like a durational HMM, except we use soft evidence on the observed nodes. % Should give the same results as HSMM/test_mgram2. past = 1; % If past=1, P(Yt|Qt=j,Dt=d) = P(y_{t-d+1:t}|j) % If past=0, P(Yt|Qt=j,Dt=d) = P(y_{t:t+d-1}|j) - future evidence words = {'the', 't', 'h', 'e'}; data = 'the'; nwords = length(words); word_len = zeros(1, nwords); word_prob = normalise(ones(1,nwords)); word_logprob = log(word_prob); for wi=1:nwords word_len(wi)=length(words{wi}); end D = max(word_len); alphasize = 26*2; data = letter2num(data); T = length(data); % node numbers W = 1; % top level state = word id L = 2; % bottom level state = letter position within word F = 3; O = 4; ss = 4; intra = zeros(ss,ss); intra(W,[F L O])=1; intra(L,[O F])=1; inter = zeros(ss,ss); inter(W,W)=1; inter(L,L)=1; inter(F,[W L O])=1; % node sizes ns = zeros(1,ss); ns(W) = nwords; ns(L) = D; ns(F) = 2; ns(O) = alphasize; ns2 = [ns ns]; % Make the DBN bnet = mk_dbn(intra, inter, ns, 'observed', O); eclass = bnet.equiv_class; % uniform start distrib over words, uniform trans mat Wstart = normalise(ones(1,nwords)); Wtrans = mk_stochastic(ones(nwords,nwords)); %Wtrans = ones(nwords,nwords); % always start in state d = length(word) for each bottom level HMM Lstart = zeros(nwords, D); for i=1:nwords l = length(words{i}); Lstart(i,l)=1; end % make downcounters RLtrans = mk_rightleft_transmat(D, 0); % 0 self loop prob Ltrans = repmat(RLtrans, [1 1 nwords]); % Finish when downcoutner = 1 Fprob = zeros(nwords, D, 2); Fprob(:,1,2)=1; Fprob(:,2:end,1)=1; % Define CPDs for slice 1 bnet.CPD{eclass(W,1)} = tabular_CPD(bnet, W, 'CPT', Wstart); bnet.CPD{eclass(L,1)} = tabular_CPD(bnet, L, 'CPT', Lstart); bnet.CPD{eclass(F,1)} = tabular_CPD(bnet, F, 'CPT', Fprob); % Define CPDs for slice 2 bnet.CPD{eclass(W,2)} = hhmmQ_CPD(bnet, W+ss, 'Fbelow', F, 'startprob', Wstart, 'transprob', Wtrans); bnet.CPD{eclass(L,2)} = hhmmQ_CPD(bnet, L+ss, 'Fself', F, 'Qps', W+ss, 'startprob', Lstart, 'transprob', Ltrans); if 0 % To test it is generating correctly, we create an artificial % observation process that capitalizes at the start of a new segment % Oprob(Ft-1,Qt,Dt,Yt) Oprob = zeros(2,nwords,D,alphasize); Oprob(1,1,3,letter2num('t'),1)=1; Oprob(1,1,2,letter2num('h'),1)=1; Oprob(1,1,1,letter2num('e'),1)=1; Oprob(2,1,3,letter2num('T'),1)=1; Oprob(2,1,2,letter2num('H'),1)=1; Oprob(2,1,1,letter2num('E'),1)=1; Oprob(1,2,1,letter2num('a'),1)=1; Oprob(2,2,1,letter2num('A'),1)=1; Oprob(1,3,1,letter2num('b'),1)=1; Oprob(2,3,1,letter2num('B'),1)=1; Oprob(1,4,1,letter2num('c'),1)=1; Oprob(2,4,1,letter2num('C'),1)=1; % Oprob1(Qt,Dt,Yt) Oprob1 = zeros(nwords,D,alphasize); Oprob1(1,3,letter2num('t'),1)=1; Oprob1(1,2,letter2num('h'),1)=1; Oprob1(1,1,letter2num('e'),1)=1; Oprob1(2,1,letter2num('a'),1)=1; Oprob1(3,1,letter2num('b'),1)=1; Oprob1(4,1,letter2num('c'),1)=1; bnet.CPD{eclass(O,2)} = tabular_CPD(bnet, O+ss, 'CPT', Oprob); bnet.CPD{eclass(O,1)} = tabular_CPD(bnet, O, 'CPT', Oprob1); evidence = cell(ss,T); %evidence{W,1}=1; sample = cell2num(sample_dbn(bnet, 'length', T, 'evidence', evidence)); str = num2letter(sample(4,:)) end if 1 [log_obslik, obslik, match] = mk_mgram_obslik(lower(data), words, word_len, word_prob); % obslik(j,t,d) softCPDpot = cell(ss,T); ens = ns; ens(O)=1; ens2 = [ens ens]; for t=2:T dom = [F W+ss L+ss O+ss]; % tab(Ft-1, Q2, Dt) tab = ones(2, nwords, D); if past tab(1,:,:)=1; % if haven't finished previous word, likelihood is 1 %tab(2,:,:) = squeeze(obslik(:,t,:)); % otherwise likelihood of this segment for d=1:min(t,D) tab(2,:,d) = squeeze(obslik(:,t,d)); end else for d=1:max(1,min(D,T+1-t)) tab(2,:,d) = squeeze(obslik(:,t+d-1,d)); end end softCPDpot{O,t} = dpot(dom, ens2(dom), tab); end t = 1; dom = [W L O]; % tab(Q2, Dt) tab = ones(nwords, D); if past %tab = squeeze(obslik(:,t,:)); tab(:,1) = squeeze(obslik(:,t,1)); else for d=1:min(D,T-t) tab(:,d) = squeeze(obslik(:,t+d-1,d)); end end softCPDpot{O,t} = dpot(dom, ens(dom), tab); %bnet.observed = []; % uniformative observations %bnet.CPD{eclass(O,2)} = tabular_CPD(bnet, O+ss, 'CPT', mk_stochastic(ones(2,nwords,D,alphasize))); %bnet.CPD{eclass(O,1)} = tabular_CPD(bnet, O, 'CPT', mk_stochastic(ones(nwords,D,alphasize))); engine = jtree_dbn_inf_engine(bnet); evidence = cell(ss,T); % we add dummy data to O to force its effective size to be 1. % The actual values have already been incorporated into softCPDpot evidence(O,:) = num2cell(ones(1,T)); [engine, ll_dbn] = enter_evidence(engine, evidence, 'softCPDpot', softCPDpot); %evidence(F,:) = num2cell(2*ones(1,T)); %[engine, ll_dbn] = enter_evidence(engine, evidence); gamma = zeros(nwords, T); for t=1:T m = marginal_nodes(engine, [W F], t); gamma(:,t) = m.T(:,2); end gamma xidbn = zeros(nwords, nwords); for t=1:T-1 m = marginal_nodes(engine, [W F W+ss], t); xidbn = xidbn + squeeze(m.T(:,2,:)); end % thee % xidbn(1,4) = 0.9412 the->e % (2,3)=0.0588 t->h % (3,4)=0.0588 h-e % (4,4)=0.0588 e-e end