Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/CPDs/@tree_CPD/tree_CPD.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function CPD = tree_CPD(varargin) %DTREE_CPD Make a conditional prob. distrib. which is a decision/regression tree. % % CPD =dtree_CPD() will create an empty tree. if nargin==0 % This occurs if we are trying to load an object from a file. CPD = init_fields; clamp = 0; CPD = class(CPD, 'tree_CPD', discrete_CPD(clamp, [])); return; elseif isa(varargin{1}, 'tree_CPD') % This might occur if we are copying an object. CPD = varargin{1}; return; end CPD = init_fields; clamped = 0; fam_sz = []; CPD = class(CPD, 'tree_CPD', discrete_CPD(clamped, fam_sz)); %%%%%%%%%%% function CPD = init_fields() % This ensures we define the fields in the same order % no matter whether we load an object from a file, % or create it from scratch. (Matlab requires this.) %init the decision tree set the root to null CPD.tree.num_node = 0; CPD.tree.root=1; CPD.tree.nodes=[];