Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/CPDs/@tabular_CPD/log_marg_prob_node.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function L = log_marg_prob_node(CPD, self_ev, pev, usecell) % LOG_MARG_PROB_NODE Compute sum_m log P(x(i,m)| x(pi_i,m)) for node i (tabular) % L = log_marg_prob_node(CPD, self_ev, pev) % % This differs from log_prob_node because we integrate out the parameters. % self_ev(m) is the evidence on this node in case m. % pev(i,m) is the evidence on the i'th parent in case m (if there are any parents). % (These may also be cell arrays.) ncases = length(self_ev); sz = CPD.sizes; nparents = length(sz)-1; assert(ncases == size(pev, 2)); if nargin < 4 %usecell = 0; if iscell(self_ev) usecell = 1; else usecell = 0; end end if ncases==0 L = 0; return; elseif ncases==1 % speedup the sequential learning case CPT = CPD.CPT; % We assume the CPTs are already set to the mean of the posterior (due to bayes_update_params) if usecell x = cat(1, pev{:})'; y = self_ev{1}; else %x = pev(:)'; x = pev; y = self_ev; end switch nparents case 0, p = CPT(y); case 1, p = CPT(x(1), y); case 2, p = CPT(x(1), x(2), y); case 3, p = CPT(x(1), x(2), x(3), y); otherwise, ind = subv2ind(sz, [x y]); p = CPT(ind); end L = log(p); else % We ignore the CPTs here and assume the prior has not been changed % We arrange the data as in the following example. % Let there be 2 parents and 3 cases. Let p(i,m) be parent i in case m, % and y(m) be the child in case m. Then we create the data matrix % % p(1,1) p(1,2) p(1,3) % p(2,1) p(2,2) p(2,3) % y(1) y(2) y(3) if usecell data = [cell2num(pev); cell2num(self_ev)]; else data = [pev; self_ev]; end %S = struct(CPD); fprintf('log marg prob node %d, ps\n', S.self); disp(S.parents) counts = compute_counts(data, sz); L = dirichlet_score_family(counts, CPD.dirichlet); end