Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/CPDs/@softmax_CPD/maximize_params.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function CPD = maximize_params(CPD, temp) % MAXIMIZE_PARAMS Set the params of a CPD to their ML values (dsoftmax) using IRLS % CPD = maximize_params(CPD, temperature) % temperature parameter is ignored % Written by Pierpaolo Brutti if ~adjustable_CPD(CPD), return; end options = foptions; if CPD.verbose options(1) = 1; else options(1) = -1; end %options(1) = CPD.verbose; options(2) = CPD.wthresh; options(3) = CPD.llthresh; options(5) = CPD.approx_hess; options(14) = CPD.max_iter; dpsize = size(CPD.self_vals,3); for i=1:dpsize, mask=find(CPD.eso_weights(:,:,i)>0); % for adapting the parameters we use only positive weighted example if ~isempty(mask), if ~isempty(CPD.dps_as_cps.ndx), puredp_map = find_equiv_posns(CPD.dpndx, union(CPD.dpndx, CPD.dps_as_cps.ndx)); % find the glm structure subs = ind2subv(CPD.sizes(union(CPD.dpndx, CPD.dps_as_cps.ndx)),i); % that corrisponds to the active_glm = max([1,subv2ind(CPD.sizes(CPD.dpndx), subs(puredp_map))]); % i-th 'fictitious' example CPD.glim{active_glm} = netopt_weighted(CPD.glim{active_glm}, options, CPD.parent_vals(mask',:,i),... CPD.self_vals(mask',:,i), CPD.eso_weights(mask',:,i), 'scg'); else alfa = 0.4; if CPD.solo, alfa = 1; end % learning step = 1 <=> self is all alone in the net CPD.glim{i} = glmtrain_weighted(CPD.glim{i}, options, CPD.parent_vals(mask',:),... CPD.self_vals(mask',:,i), CPD.eso_weights(mask',:,i), alfa); end end mask=[]; end