Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/CPDs/@mlp_CPD/maximize_params.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function CPD = maximize_params(CPD, temp) % MAXIMIZE_PARAMS Find ML params of an MLP using Scaled Conjugated Gradient (SCG) % CPD = maximize_params(CPD, temperature) % temperature parameter is ignored if ~adjustable_CPD(CPD), return; end options = foptions; % options(1) >= 0 means print an annoying message when the max. num. iter. is reached if CPD.verbose options(1) = 1; else options(1) = -1; end %options(1) = CPD.verbose; options(2) = CPD.wthresh; options(3) = CPD.llthresh; options(14) = CPD.max_iter; dpsz=length(CPD.mlp); for i=1:dpsz mask=[]; mask=find(CPD.eso_weights(:,:,i)>0); % for adapting the parameters we use only positive weighted example if ~isempty(mask), CPD.mlp{i} = netopt_weighted(CPD.mlp{i}, options, CPD.parent_vals(mask',:), CPD.self_vals(mask',:,i), CPD.eso_weights(mask',:,i), 'scg'); CPD.W1(:,:,i)=CPD.mlp{i}.w1; % update the parameters matrix CPD.b1(i,:)=CPD.mlp{i}.b1; % CPD.W2(:,:,i)=CPD.mlp{i}.w2; % update the parameters matrix CPD.b2(i,:)=CPD.mlp{i}.b2; % end end