Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/CPDs/@hhmmQ_CPD/hhmmQ_CPD.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function CPD = hhmmQ_CPD(bnet, self, varargin) % HHMMQ_CPD Make the CPD for a Q node in a hierarchical HMM % CPD = hhmmQ_CPD(bnet, self, ...) % % Fself(t-1) Qps(t) % \ | % \ v % Qold(t-1) -> Q(t) % / % / % Fbelow(t-1) % % Let ss = slice size = num. nodes per slice. % This node is Q(t), and has mandatory parents Qold(t-1) (assumed to be numbered Q(t)-ss) % and optional parents Fbelow, Fself, Qps. % We require parents to be ordered (numbered) as follows: % Qold, Fbelow, Fself, Qps, Q. % % If Fself=2, we use the transition matrix, else we use the prior matrix. % If Fself node is omitted (eg. top level), we always use the transition matrix. % If Fbelow=2, we may change state, otherwise we must stay in the same state. % If Fbelow node is omitted (eg., bottom level), we may change state at every step. % If Qps (Q parents) are specified, all parameters are conditioned on their joint value. % We may choose any subset of nodes to condition on, as long as they as numbered lower than self. % % optional args [defaults] % % Fself - node number <= ss % Fbelow - node number <= ss % Qps - node numbers (all <= 2*ss) - uses 2TBN indexing % transprob - transprob(i,k,j) = prob transition from i to j given Qps = k ['leftright'] % selfprob - prob of a transition from i to i given Qps=k [0.1] % startprob - startprob(k,j) = prob start in j given Qps = k ['leftstart'] % startargs - other args to be passed to the sub tabular_CPD for learning startprob % transargs - other args will be passed to the sub tabular_CPD for learning transprob % fullstartprob - 1 means startprob depends on Q(t-1) [0] % hhmmQ_CPD is a subclass of tabular_CPD so we inherit inference methods like CPD_to_pot, etc. % % We create isolated tabular_CPDs with no F parents to learn transprob/startprob % so we can avail of e.g., entropic or Dirichlet priors. % In the future, we will be able to represent the transprob using a tree_CPD. % % For details, see "Linear-time inference in hierarchical HMMs", Murphy and Paskin, NIPS'01. ss = bnet.nnodes_per_slice; ns = bnet.node_sizes(:); % set default arguments Fself = []; Fbelow = []; Qps = []; startprob = 'leftstart'; transprob = 'leftright'; startargs = {}; transargs = {}; selfprob = 0.1; fullstartprob = 0; for i=1:2:length(varargin) switch varargin{i}, case 'Fself', Fself = varargin{i+1}; case 'Fbelow', Fbelow = varargin{i+1}; case 'Qps', Qps = varargin{i+1}; case 'transprob', transprob = varargin{i+1}; case 'selfprob', selfprob = varargin{i+1}; case 'startprob', startprob = varargin{i+1}; case 'startargs', startargs = varargin{i+1}; case 'transargs', transargs = varargin{i+1}; case 'fullstartprob', fullstartprob = varargin{i+1}; end end CPD.fullstartprob = fullstartprob; ps = parents(bnet.dag, self); ndsz = ns(:)'; CPD.dom_sz = [ndsz(ps) ns(self)]; CPD.Fself_ndx = find_equiv_posns(Fself, ps); CPD.Fbelow_ndx = find_equiv_posns(Fbelow, ps); %CPD.Qps_ndx = find_equiv_posns(Qps+ss, ps); CPD.Qps_ndx = find_equiv_posns(Qps, ps); old_self = self-ss; CPD.old_self_ndx = find_equiv_posns(old_self, ps); Qps = ps(CPD.Qps_ndx); CPD.Qsz = ns(self); CPD.Qpsz = prod(ns(Qps)); CPD.Qpsizes = ns(Qps); Qsz = CPD.Qsz; Qpsz = CPD.Qpsz; if strcmp(transprob, 'leftright') LR = mk_leftright_transmat(Qsz, selfprob); transprob = repmat(reshape(LR, [1 Qsz Qsz]), [Qpsz 1 1]); % transprob(k,i,j) transprob = permute(transprob, [2 1 3]); % now transprob(i,k,j) end transargs{end+1} = 'CPT'; transargs{end+1} = transprob; CPD.sub_CPD_trans = mk_isolated_tabular_CPD(ns([old_self Qps self]), transargs); S = struct(CPD.sub_CPD_trans); %CPD.transprob = myreshape(S.CPT, [Qsz Qpsz Qsz]); CPD.transprob = S.CPT; if strcmp(startprob, 'leftstart') startprob = zeros(Qpsz, Qsz); startprob(:,1) = 1; end if isempty(CPD.Fself_ndx) CPD.sub_CPD_start = []; CPD.startprob = []; else startargs{end+1} = 'CPT'; startargs{end+1} = startprob; if CPD.fullstartprob CPD.sub_CPD_start = mk_isolated_tabular_CPD(ns([self Qps self]), startargs); S = struct(CPD.sub_CPD_start); %CPD.startprob = myreshape(S.CPT, [Qsz Qpsz Qsz]); CPD.startprob = S.CPT; else CPD.sub_CPD_start = mk_isolated_tabular_CPD(ns([Qps self]), startargs); S = struct(CPD.sub_CPD_start); %CPD.startprob = myreshape(S.CPT, [CPD.Qpsizes Qsz]); CPD.startprob = S.CPT; end end CPD = class(CPD, 'hhmmQ_CPD', tabular_CPD(bnet, self)); CPD = update_CPT(CPD);