Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/CPDs/@gaussian_CPD/learn_params.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function CPD = learn_params(CPD, fam, data, ns, cnodes) %function CPD = learn_params(CPD, fam, data, ns, cnodes) % LEARN_PARAMS Compute the maximum likelihood estimate of the params of a gaussian CPD given complete data % CPD = learn_params(CPD, fam, data, ns, cnodes) % % data(i,m) is the value of node i in case m (can be cell array). % We assume this node has a maximize_params method. ncases = size(data, 2); CPD = reset_ess(CPD); % make a fully observed joint distribution over the family fmarginal.domain = fam; fmarginal.T = 1; fmarginal.mu = []; fmarginal.Sigma = []; if ~iscell(data) cases = num2cell(data); else cases = data; end hidden_bitv = zeros(1, max(fam)); for m=1:ncases % specify (as a bit vector) which elements in the family domain are hidden hidden_bitv = zeros(1, max(fmarginal.domain)); ev = cases(:,m); hidden_bitv(find(isempty(ev)))=1; CPD = update_ess(CPD, fmarginal, ev, ns, cnodes, hidden_bitv); end CPD = maximize_params(CPD);