Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/CPDs/@boolean_CPD/boolean_CPD.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function CPD = boolean_CPD(bnet, self, ftype, fname, pfail) % BOOLEAN_CPD Make a tabular CPD representing a (noisy) boolean function % % CPD = boolean_cpd(bnet, self, 'inline', f) uses the inline function f % to specify the CPT. % e.g., suppose X4 = X2 AND (NOT X3). Then we can write % bnet.CPD{4} = boolean_CPD(bnet, 4, 'inline', inline('(x(1) & ~x(2)')); % Note that x(1) refers pvals(1) = X2, and x(2) refers to pvals(2)=X3. % % CPD = boolean_cpd(bnet, self, 'named', f) assumes f is a function name. % f can be built-in to matlab, or a file. % e.g., If X4 = X2 AND X3, we can write % bnet.CPD{4} = boolean_CPD(bnet, 4, 'named', 'and'); % e.g., If X4 = X2 OR X3, we can write % bnet.CPD{4} = boolean_CPD(bnet, 4, 'named', 'any'); % % CPD = boolean_cpd(bnet, self, 'rnd') makes a random non-redundant bool fn. % % CPD = boolean_CPD(bnet, self, 'inline'/'named', f, pfail) % will put probability mass 1-pfail on f(parents), and put pfail on the other value. % This is useful for simulating noisy boolean functions. % If pfail is omitted, it is set to 0. % (Note that adding noise to a random (non-redundant) boolean function just creates a different % (potentially redundant) random boolean function.) % % Note: This cannot be used to simulate a noisy-OR gate. % Example: suppose C has parents A and B, and the % link of A->C fails with prob pA and the link B->C fails with pB. % Then the noisy-OR gate defines the following distribution % % A B P(C=0) % 0 0 1.0 % 1 0 pA % 0 1 pB % 1 1 pA * PB % % By contrast, boolean_CPD(bnet, C, 'any', p) would define % % A B P(C=0) % 0 0 1-p % 1 0 p % 0 1 p % 1 1 p if nargin==0 % This occurs if we are trying to load an object from a file. CPD = tabular_CPD(bnet, self); return; elseif isa(bnet, 'boolean_CPD') % This might occur if we are copying an object. CPD = bnet; return; end if nargin < 5, pfail = 0; end ps = parents(bnet.dag, self); ns = bnet.node_sizes; psizes = ns(ps); self_size = ns(self); psucc = 1-pfail; k = length(ps); switch ftype case 'inline', f = eval_bool_fn(fname, k); case 'named', f = eval_bool_fn(fname, k); case 'rnd', f = mk_rnd_bool_fn(k); otherwise, error(['unknown function type ' ftype]); end CPT = zeros(prod(psizes), self_size); ndx = find(f==0); CPT(ndx, 1) = psucc; CPT(ndx, 2) = pfail; ndx = find(f==1); CPT(ndx, 2) = psucc; CPT(ndx, 1) = pfail; if k > 0 CPT = reshape(CPT, [psizes self_size]); end clamp = 1; CPD = tabular_CPD(bnet, self, CPT, [], clamp); %%%%%%%%%%%% function f = eval_bool_fn(fname, n) % EVAL_BOOL_FN Evaluate a boolean function on all bit vectors of length n % f = eval_bool_fn(fname, n) % % e.g. f = eval_bool_fn(inline('x(1) & x(3)'), 3) % returns 0 0 0 0 0 1 0 1 ns = 2*ones(1, n); f = zeros(1, 2^n); bits = ind2subv(ns, 1:2^n); for i=1:2^n f(i) = feval(fname, bits(i,:)-1); end %%%%%%%%%%%%%%% function f = mk_rnd_bool_fn(n) % MK_RND_BOOL_FN Make a random bit vector of length n that encodes a non-redundant boolean function % f = mk_rnd_bool_fn(n) red = 1; while red f = sample_discrete([0.5 0.5], 2^n, 1)-1; red = redundant_bool_fn(f); end %%%%%%%% function red = redundant_bool_fn(f) % REDUNDANT_BOOL_FN Does a boolean function depend on all its input values? % r = redundant_bool_fn(f) % % f is a vector of length 2^n, representing the output for each bit vector. % An input is redundant if there is no assignment to the other bits % which changes the output e.g., input 1 is redundant if u(2:n) s.t., % f([0 u(2:n)]) <> f([1 u(2:n)]). % A function is redundant it it has any redundant inputs. n = log2(length(f)); ns = 2*ones(1,n); red = 0; for i=1:n ens = ns; ens(i) = 1; U = ind2subv(ens, 1:2^(n-1)); U(:,i) = 1; f1 = f(subv2ind(ns, U)); U(:,i) = 2; f2 = f(subv2ind(ns, U)); if isequal(f1, f2) red = 1; return; end end %%%%%%%%%% function [b, iter] = rnd_truth_table(N) % RND_TRUTH_TABLE Construct the output of a random truth table s.t. each input is non-redundant % b = rnd_truth_table(N) % % N is the number of inputs. % b is a random bit string of length N, representing the output of the truth table. % Non-redundant means that, for each input position k, % there are at least two bit patterns, u and v, that differ only in the k'th position, % s.t., f(u) ~= f(v), where f is the function represented by b. % We use rejection sampling to ensure non-redundancy. % % Example: b = [0 0 0 1 0 0 0 1] is indep of 3rd input (AND of inputs 1 and 2) bits = ind2subv(2*ones(1,N), 1:2^N)-1; redundant = 1; iter = 0; while redundant & (iter < 4) iter = iter + 1; b = sample_discrete([0.5 0.5], 1, 2^N)-1; redundant = 0; for i=1:N on = find(bits(:,i)==1); off = find(bits(:,i)==0); if isequal(b(on), b(off)) redundant = 1; break; end end end