Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/Kalman/learn_AR.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [coef, C] = learn_AR(data, k) % Find the ML parameters of a vector autoregressive process of order k. % [coef, C] = learn_AR(k, data) % data{l}(:,t) = the observations at time t in sequence l warning('learn_AR seems to be broken'); nex = length(data); obs = cell(1, nex); for l=1:nex obs{l} = convert_to_lagged_form(data{l}, k); end % The initial parameter values don't matter, since this is a perfectly observable problem. % However, the size of F must be set correctly. y = data{1}; [s T] = size(y); coef = rand(s,s,k); C = rand_psd(s); [F,H,Q,R,initx,initV] = AR_to_SS(coef, C, y); max_iter = 1; fully_observed = 1; diagQ = 0; diagR = 0; [F, H, Q, R, initx, initV, loglik] = ... learn_kalman(obs, F, H, Q, R, initx, initV, max_iter, diagQ, diagR, fully_observed); [coef, C] = SS_to_AR(F, Q, k);