Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/Kalman/eval_AR_perf.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [ypred, ll, mse] = eval_AR_perf(coef, C, y, model) % Evaluate the performance of an AR model. % % Inputs % coef(:,:,k,m) - coef. matrix to use for k steps back, model m % C(:,:,m) - cov. matrix for model m % y(:,t) - observation at time t % model(t) - which model to use at time t (defaults to 1 if not specified) % % Outputs % ypred(:,t) - the predicted value of y at t based on the evidence thru t-1. % ll - log likelihood % mse - mean squared error = sum_t d_t . d_t, where d_t = pred(y_t) - y(t) [s T] = size(y); k = size(coef, 3); M = size(coef, 4); if nargin<4, model = ones(1, T); end ypred = zeros(s, T); ypred(:, 1:k) = y(:, 1:k); mse = 0; ll = 0; for j=1:M c(j) = log(normal_coef(C(:,:,j))); invC(:,:,j) = inv(C(:,:,j)); end coef = reshape(coef, [s s*k M]); for t=k+1:T m = model(t-k); past = y(:,t-1:-1:t-k); ypred(:,t) = coef(:, :, m) * past(:); d = ypred(:,t) - y(:,t); mse = mse + d' * d; ll = ll + c(m) - 0.5*(d' * invC(:,:,m) * d); end mse = mse / (T-k+1);