Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMtools/rectintSparseLoopC.c @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
/* This is based on http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/ch04cr12.shtml See rectintSparse.m for the matlab version of this code. */ #include <math.h> /* Needed for the ceil() prototype. */ #include "mex.h" #include <stdio.h> /* If you are using a compiler that equates NaN to be zero, you * must compile this example using the flag -DNAN_EQUALS_ZERO. * For example: * * mex -DNAN_EQUALS_ZERO fulltosparse.c * * This will correctly define the IsNonZero macro for your C * compiler. */ #if defined(NAN_EQUALS_ZERO) #define IsNonZero(d) ((d) != 0.0 || mxIsNaN(d)) #else #define IsNonZero(d) ((d) != 0.0) #endif #define MAX(x,y) ((x)>(y) ? (x) : (y)) #define MIN(x,y) ((x)<(y) ? (x) : (y)) void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] ) { /* Declare variables. */ int j,k,m,n,nzmax,*irs,*jcs, *irs2, *jcs2; double *overlap, *overlap2, tmp, areaA, areaB; double percent_sparse; double *leftA, *rightA, *topA, *bottomA; double *leftB, *rightB, *topB, *bottomB; double *verbose; /* Get the size and pointers to input data. */ m = MAX(mxGetM(prhs[0]), mxGetN(prhs[0])); n = MAX(mxGetM(prhs[4]), mxGetN(prhs[4])); /* printf("A=%d, B=%d\n", m, n); */ leftA = mxGetPr(prhs[0]); rightA = mxGetPr(prhs[1]); topA = mxGetPr(prhs[2]); bottomA = mxGetPr(prhs[3]); leftB = mxGetPr(prhs[4]); rightB = mxGetPr(prhs[5]); topB = mxGetPr(prhs[6]); bottomB = mxGetPr(prhs[7]); verbose = mxGetPr(prhs[8]); /* Allocate space for sparse matrix. * NOTE: Assume at most 20% of the data is sparse. Use ceil * to cause it to round up. */ percent_sparse = 0.01; nzmax = (int)ceil((double)m*(double)n*percent_sparse); plhs[0] = mxCreateSparse(m,n,nzmax,0); overlap = mxGetPr(plhs[0]); irs = mxGetIr(plhs[0]); jcs = mxGetJc(plhs[0]); plhs[1] = mxCreateSparse(m,n,nzmax,0); overlap2 = mxGetPr(plhs[1]); irs2 = mxGetIr(plhs[1]); jcs2 = mxGetJc(plhs[1]); /* Assign nonzeros. */ k = 0; for (j = 0; (j < n); j++) { int i; jcs[j] = k; jcs2[j] = k; for (i = 0; (i < m); i++) { tmp = (MAX(0, MIN(rightA[i], rightB[j]) - MAX(leftA[i], leftB[j]) )) * (MAX(0, MIN(topA[i], topB[j]) - MAX(bottomA[i], bottomB[j]) )); if (*verbose) { printf("j=%d,i=%d,tmp=%5.3f\n", j,i,tmp); } if (IsNonZero(tmp)) { /* Check to see if non-zero element will fit in * allocated output array. If not, increase * percent_sparse by 20%, recalculate nzmax, and augment * the sparse array. */ if (k >= nzmax) { int oldnzmax = nzmax; percent_sparse += 0.2; nzmax = (int)ceil((double)m*(double)n*percent_sparse); /* Make sure nzmax increases atleast by 1. */ if (oldnzmax == nzmax) nzmax++; printf("reallocating from %d to %d\n", oldnzmax, nzmax); mxSetNzmax(plhs[0], nzmax); mxSetPr(plhs[0], mxRealloc(overlap, nzmax*sizeof(double))); mxSetIr(plhs[0], mxRealloc(irs, nzmax*sizeof(int))); overlap = mxGetPr(plhs[0]); irs = mxGetIr(plhs[0]); mxSetNzmax(plhs[1], nzmax); mxSetPr(plhs[1], mxRealloc(overlap2, nzmax*sizeof(double))); mxSetIr(plhs[1], mxRealloc(irs2, nzmax*sizeof(int))); overlap2 = mxGetPr(plhs[1]); irs2 = mxGetIr(plhs[1]); } overlap[k] = tmp; irs[k] = i; areaA = (rightA[i]-leftA[i])*(topA[i]-bottomA[i]); areaB = (rightB[j]-leftB[j])*(topB[j]-bottomB[j]); overlap2[k] = MIN(tmp/areaA, tmp/areaB); irs2[k] = i; k++; } /* IsNonZero */ } /* for i */ } jcs[n] = k; jcs2[n] = k; }