Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/mixgauss_prob.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [B, B2] = mixgauss_prob(data, mu, Sigma, mixmat, unit_norm) % EVAL_PDF_COND_MOG Evaluate the pdf of a conditional mixture of Gaussians % function [B, B2] = eval_pdf_cond_mog(data, mu, Sigma, mixmat, unit_norm) % % Notation: Y is observation, M is mixture component, and both may be conditioned on Q. % If Q does not exist, ignore references to Q=j below. % Alternatively, you may ignore M if this is a conditional Gaussian. % % INPUTS: % data(:,t) = t'th observation vector % % mu(:,k) = E[Y(t) | M(t)=k] % or mu(:,j,k) = E[Y(t) | Q(t)=j, M(t)=k] % % Sigma(:,:,j,k) = Cov[Y(t) | Q(t)=j, M(t)=k] % or there are various faster, special cases: % Sigma() - scalar, spherical covariance independent of M,Q. % Sigma(:,:) diag or full, tied params independent of M,Q. % Sigma(:,:,j) tied params independent of M. % % mixmat(k) = Pr(M(t)=k) = prior % or mixmat(j,k) = Pr(M(t)=k | Q(t)=j) % Not needed if M is not defined. % % unit_norm - optional; if 1, means data(:,i) AND mu(:,i) each have unit norm (slightly faster) % % OUTPUT: % B(t) = Pr(y(t)) % or % B(i,t) = Pr(y(t) | Q(t)=i) % B2(i,k,t) = Pr(y(t) | Q(t)=i, M(t)=k) % % If the number of mixture components differs depending on Q, just set the trailing % entries of mixmat to 0, e.g., 2 components if Q=1, 3 components if Q=2, % then set mixmat(1,3)=0. In this case, B2(1,3,:)=1.0. if isvectorBNT(mu) & size(mu,2)==1 d = length(mu); Q = 1; M = 1; elseif ndims(mu)==2 [d Q] = size(mu); M = 1; else [d Q M] = size(mu); end [d T] = size(data); if nargin < 4, mixmat = ones(Q,1); end if nargin < 5, unit_norm = 0; end %B2 = zeros(Q,M,T); % ATB: not needed allways %B = zeros(Q,T); if isscalarBNT(Sigma) mu = reshape(mu, [d Q*M]); if unit_norm % (p-q)'(p-q) = p'p + q'q - 2p'q = n+m -2p'q since p(:,i)'p(:,i)=1 %avoid an expensive repmat disp('unit norm') %tic; D = 2 -2*(data'*mu)'; toc D = 2 - 2*(mu'*data); tic; D2 = sqdist(data, mu)'; toc assert(approxeq(D,D2)) else D = sqdist(data, mu)'; end clear mu data % ATB: clear big old data % D(qm,t) = sq dist between data(:,t) and mu(:,qm) logB2 = -(d/2)*log(2*pi*Sigma) - (1/(2*Sigma))*D; % det(sigma*I) = sigma^d B2 = reshape(exp(logB2), [Q M T]); clear logB2 % ATB: clear big old data elseif ndims(Sigma)==2 % tied full mu = reshape(mu, [d Q*M]); D = sqdist(data, mu, inv(Sigma))'; % D(qm,t) = sq dist between data(:,t) and mu(:,qm) logB2 = -(d/2)*log(2*pi) - 0.5*logdet(Sigma) - 0.5*D; %denom = sqrt(det(2*pi*Sigma)); %numer = exp(-0.5 * D); %B2 = numer/denom; B2 = reshape(exp(logB2), [Q M T]); elseif ndims(Sigma)==3 % tied across M B2 = zeros(Q,M,T); for j=1:Q % D(m,t) = sq dist between data(:,t) and mu(:,j,m) if isposdef(Sigma(:,:,j)) D = sqdist(data, permute(mu(:,j,:), [1 3 2]), inv(Sigma(:,:,j)))'; logB2 = -(d/2)*log(2*pi) - 0.5*logdet(Sigma(:,:,j)) - 0.5*D; B2(j,:,:) = exp(logB2); else error(sprintf('mixgauss_prob: Sigma(:,:,q=%d) not psd\n', j)); end end else % general case B2 = zeros(Q,M,T); for j=1:Q for k=1:M %if mixmat(j,k) > 0 B2(j,k,:) = gaussian_prob(data, mu(:,j,k), Sigma(:,:,j,k)); %end end end end % B(j,t) = sum_k B2(j,k,t) * Pr(M(t)=k | Q(t)=j) % The repmat is actually slower than the for-loop, because it uses too much memory % (this is true even for small T). %B = squeeze(sum(B2 .* repmat(mixmat, [1 1 T]), 2)); %B = reshape(B, [Q T]); % undo effect of squeeze in case Q = 1 B = zeros(Q,T); if Q < T for q=1:Q %B(q,:) = mixmat(q,:) * squeeze(B2(q,:,:)); % squeeze chnages order if M=1 B(q,:) = mixmat(q,:) * permute(B2(q,:,:), [2 3 1]); % vector * matrix sums over m end else for t=1:T B(:,t) = sum(mixmat .* B2(:,:,t), 2); % sum over m end end %t=toc;fprintf('%5.3f\n', t) %tic %A = squeeze(sum(B2 .* repmat(mixmat, [1 1 T]), 2)); %t=toc;fprintf('%5.3f\n', t) %assert(approxeq(A,B)) % may be false because of round off error