Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/mixgauss_Mstep.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [mu, Sigma] = mixgauss_Mstep(w, Y, YY, YTY, varargin) % MSTEP_COND_GAUSS Compute MLEs for mixture of Gaussians given expected sufficient statistics % function [mu, Sigma] = Mstep_cond_gauss(w, Y, YY, YTY, varargin) % % We assume P(Y|Q=i) = N(Y; mu_i, Sigma_i) % and w(i,t) = p(Q(t)=i|y(t)) = posterior responsibility % See www.ai.mit.edu/~murphyk/Papers/learncg.pdf. % % INPUTS: % w(i) = sum_t w(i,t) = responsibilities for each mixture component % If there is only one mixture component (i.e., Q does not exist), % then w(i) = N = nsamples, and % all references to i can be replaced by 1. % YY(:,:,i) = sum_t w(i,t) y(:,t) y(:,t)' = weighted outer product % Y(:,i) = sum_t w(i,t) y(:,t) = weighted observations % YTY(i) = sum_t w(i,t) y(:,t)' y(:,t) = weighted inner product % You only need to pass in YTY if Sigma is to be estimated as spherical. % % Optional parameters may be passed as 'param_name', param_value pairs. % Parameter names are shown below; default values in [] - if none, argument is mandatory. % % 'cov_type' - 'full', 'diag' or 'spherical' ['full'] % 'tied_cov' - 1 (Sigma) or 0 (Sigma_i) [0] % 'clamped_cov' - pass in clamped value, or [] if unclamped [ [] ] % 'clamped_mean' - pass in clamped value, or [] if unclamped [ [] ] % 'cov_prior' - Lambda_i, added to YY(:,:,i) [0.01*eye(d,d,Q)] % % If covariance is tied, Sigma has size d*d. % But diagonal and spherical covariances are represented in full size. [cov_type, tied_cov, clamped_cov, clamped_mean, cov_prior, other] = ... process_options(varargin,... 'cov_type', 'full', 'tied_cov', 0, 'clamped_cov', [], 'clamped_mean', [], ... 'cov_prior', []); [Ysz Q] = size(Y); N = sum(w); if isempty(cov_prior) %cov_prior = zeros(Ysz, Ysz, Q); %for q=1:Q % cov_prior(:,:,q) = 0.01*cov(Y(:,q)'); %end cov_prior = repmat(0.01*eye(Ysz,Ysz), [1 1 Q]); end %YY = reshape(YY, [Ysz Ysz Q]) + cov_prior; % regularize the scatter matrix YY = reshape(YY, [Ysz Ysz Q]); % Set any zero weights to one before dividing % This is valid because w(i)=0 => Y(:,i)=0, etc w = w + (w==0); if ~isempty(clamped_mean) mu = clamped_mean; else % eqn 6 %mu = Y ./ repmat(w(:)', [Ysz 1]);% Y may have a funny size mu = zeros(Ysz, Q); for i=1:Q mu(:,i) = Y(:,i) / w(i); end end if ~isempty(clamped_cov) Sigma = clamped_cov; return; end if ~tied_cov Sigma = zeros(Ysz,Ysz,Q); for i=1:Q if cov_type(1) == 's' % eqn 17 s2 = (1/Ysz)*( (YTY(i)/w(i)) - mu(:,i)'*mu(:,i) ); Sigma(:,:,i) = s2 * eye(Ysz); else % eqn 12 SS = YY(:,:,i)/w(i) - mu(:,i)*mu(:,i)'; if cov_type(1)=='d' SS = diag(diag(SS)); end Sigma(:,:,i) = SS; end end else % tied cov if cov_type(1) == 's' % eqn 19 s2 = (1/(N*Ysz))*(sum(YTY,2) + sum(diag(mu'*mu) .* w)); Sigma = s2*eye(Ysz); else SS = zeros(Ysz, Ysz); % eqn 15 for i=1:Q % probably could vectorize this... SS = SS + YY(:,:,i)/N - mu(:,i)*mu(:,i)'; end if cov_type(1) == 'd' Sigma = diag(diag(SS)); else Sigma = SS; end end end if tied_cov Sigma = repmat(Sigma, [1 1 Q]); end Sigma = Sigma + cov_prior;