Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/cwr_em.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function cwr = cwr_em(X, Y, nc, varargin) % CWR_LEARN Fit the parameters of a cluster weighted regression model using EM % function cwr = cwr_learn(X, Y, ...) % % X(:, t) is the t'th input example % Y(:, t) is the t'th output example % nc is the number of clusters % % Kevin Murphy, May 2003 [max_iter, thresh, cov_typeX, cov_typeY, clamp_weights, ... muX, muY, SigmaX, SigmaY, weightsY, priorC, create_init_params, ... cov_priorX, cov_priorY, verbose, regress, clamp_covX, clamp_covY] = process_options(... varargin, 'max_iter', 10, 'thresh', 1e-2, 'cov_typeX', 'full', ... 'cov_typeY', 'full', 'clamp_weights', 0, ... 'muX', [], 'muY', [], 'SigmaX', [], 'SigmaY', [], 'weightsY', [], 'priorC', [], ... 'create_init_params', 1, 'cov_priorX', [], 'cov_priorY', [], 'verbose', 0, ... 'regress', 1, 'clamp_covX', 0, 'clamp_covY', 0); [nx N] = size(X); [ny N2] = size(Y); if N ~= N2 error(sprintf('nsamples X (%d) ~= nsamples Y (%d)', N, N2)); end %if N < nx % fprintf('cwr_em warning: dim X (%d) > nsamples X (%d)\n', nx, N); %end if (N < nx) & regress fprintf('cwr_em warning: dim X = %d, nsamples X = %d\n', nx, N); end if (N < ny) fprintf('cwr_em warning: dim Y = %d, nsamples Y = %d\n', ny, N); end if (nc > N) error(sprintf('cwr_em: more centers (%d) than data', nc)) end if nc==1 % No latent variable, so there is a closed-form solution w = 1/N; WYbig = Y*w; WYY = WYbig * Y'; WY = sum(WYbig, 2); WYTY = sum(diag(WYbig' * Y)); cwr.priorC = 1; cwr.SigmaX = []; if ~regress % This is just fitting an unconditional Gaussian cwr.weightsY = []; [cwr.muY, cwr.SigmaY] = ... mixgauss_Mstep(1, WY, WYY, WYTY, ... 'cov_type', cov_typeY, 'cov_prior', cov_priorY); % There is a much easier way... assert(approxeq(cwr.muY, mean(Y'))) assert(approxeq(cwr.SigmaY, cov(Y') + 0.01*eye(ny))) else % This is just linear regression WXbig = X*w; WXX = WXbig * X'; WX = sum(WXbig, 2); WXTX = sum(diag(WXbig' * X)); WXY = WXbig * Y'; [cwr.muY, cwr.SigmaY, cwr.weightsY] = ... clg_Mstep(1, WY, WYY, WYTY, WX, WXX, WXY, ... 'cov_type', cov_typeY, 'cov_prior', cov_priorY); end if clamp_covY, cwr.SigmaY = SigmaY; end if clamp_weights, cwr.weightsY = weightsY; end return; end if create_init_params [cwr.muX, cwr.SigmaX] = mixgauss_init(nc, X, cov_typeX); [cwr.muY, cwr.SigmaY] = mixgauss_init(nc, Y, cov_typeY); cwr.weightsY = zeros(ny, nx, nc); cwr.priorC = normalize(ones(nc,1)); else cwr.muX = muX; cwr.muY = muY; cwr.SigmaX = SigmaX; cwr.SigmaY = SigmaY; cwr.weightsY = weightsY; cwr.priorC = priorC; end if clamp_covY, cwr.SigmaY = SigmaY; end if clamp_covX, cwr.SigmaX = SigmaX; end if clamp_weights, cwr.weightsY = weightsY; end previous_loglik = -inf; num_iter = 1; converged = 0; while (num_iter <= max_iter) & ~converged % E step [likXandY, likYgivenX, post] = cwr_prob(cwr, X, Y); loglik = sum(log(likXandY)); % extract expected sufficient statistics w = sum(post,2); % post(c,t) WYY = zeros(ny, ny, nc); WY = zeros(ny, nc); WYTY = zeros(nc,1); WXX = zeros(nx, nx, nc); WX = zeros(nx, nc); WXTX = zeros(nc, 1); WXY = zeros(nx,ny,nc); %WYY = repmat(reshape(w, [1 1 nc]), [ny ny 1]) .* repmat(Y*Y', [1 1 nc]); for c=1:nc weights = repmat(post(c,:), ny, 1); WYbig = Y .* weights; WYY(:,:,c) = WYbig * Y'; WY(:,c) = sum(WYbig, 2); WYTY(c) = sum(diag(WYbig' * Y)); weights = repmat(post(c,:), nx, 1); % weights(nx, nsamples) WXbig = X .* weights; WXX(:,:,c) = WXbig * X'; WX(:,c) = sum(WXbig, 2); WXTX(c) = sum(diag(WXbig' * X)); WXY(:,:,c) = WXbig * Y'; end % M step % Q -> X is called Q->Y in Mstep_clg [cwr.muX, cwr.SigmaX] = mixgauss_Mstep(w, WX, WXX, WXTX, ... 'cov_type', cov_typeX, 'cov_prior', cov_priorX); for c=1:nc assert(is_psd(cwr.SigmaX(:,:,c))) end if clamp_weights % affects estimate of mu and Sigma W = cwr.weightsY; else W = []; end [cwr.muY, cwr.SigmaY, cwr.weightsY] = ... clg_Mstep(w, WY, WYY, WYTY, WX, WXX, WXY, ... 'cov_type', cov_typeY, 'clamped_weights', W, ... 'cov_prior', cov_priorY); %'xs', X, 'ys', Y, 'post', post); % debug %a = linspace(min(Y(2,:)), max(Y(2,:)), nc+2); %cwr.muY(2,:) = a(2:end-1); cwr.priorC = normalize(w); for c=1:nc assert(is_psd(cwr.SigmaY(:,:,c))) end if clamp_covY, cwr.SigmaY = SigmaY; end if clamp_covX, cwr.SigmaX = SigmaX; end if clamp_weights, cwr.weightsY = weightsY; end if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end num_iter = num_iter + 1; converged = em_converged(loglik, previous_loglik, thresh); previous_loglik = loglik; end