Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/cond_indep_fisher_z.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [CI, r, p] = cond_indep_fisher_z(X, Y, S, C, N, alpha) % COND_INDEP_FISHER_Z Test if X indep Y given Z using Fisher's Z test % CI = cond_indep_fisher_z(X, Y, S, C, N, alpha) % % C is the covariance (or correlation) matrix % N is the sample size % alpha is the significance level (default: 0.05) % % See p133 of T. Anderson, "An Intro. to Multivariate Statistical Analysis", 1984 if nargin < 6, alpha = 0.05; end r = partial_corr_coef(C, X, Y, S); z = 0.5*log( (1+r)/(1-r) ); z0 = 0; W = sqrt(N - length(S) - 3)*(z-z0); % W ~ N(0,1) cutoff = norminv(1 - 0.5*alpha); % P(|W| <= cutoff) = 0.95 %cutoff = mynorminv(1 - 0.5*alpha); % P(|W| <= cutoff) = 0.95 if abs(W) < cutoff CI = 1; else % reject the null hypothesis that rho = 0 CI = 0; end p = normcdf(W); %p = mynormcdf(W); %%%%%%%%% function p = normcdf(x,mu,sigma) %NORMCDF Normal cumulative distribution function (cdf). % P = NORMCDF(X,MU,SIGMA) computes the normal cdf with mean MU and % standard deviation SIGMA at the values in X. % % The size of P is the common size of X, MU and SIGMA. A scalar input % functions as a constant matrix of the same size as the other inputs. % % Default values for MU and SIGMA are 0 and 1 respectively. % References: % [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical % Functions", Government Printing Office, 1964, 26.2. % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 1.1.1.1 $ $Date: 2005/04/26 02:29:18 $ if nargin < 3, sigma = 1; end if nargin < 2; mu = 0; end [errorcode x mu sigma] = distchck(3,x,mu,sigma); if errorcode > 0 error('Requires non-scalar arguments to match in size.'); end % Initialize P to zero. p = zeros(size(x)); % Return NaN if SIGMA is not positive. k1 = find(sigma <= 0); if any(k1) tmp = NaN; p(k1) = tmp(ones(size(k1))); end % Express normal CDF in terms of the error function. k = find(sigma > 0); if any(k) p(k) = 0.5 * erfc( - (x(k) - mu(k)) ./ (sigma(k) * sqrt(2))); end % Make sure that round-off errors never make P greater than 1. k2 = find(p > 1); if any(k2) p(k2) = ones(size(k2)); end %%%%%%%% function x = norminv(p,mu,sigma); %NORMINV Inverse of the normal cumulative distribution function (cdf). % X = NORMINV(P,MU,SIGMA) finds the inverse of the normal cdf with % mean, MU, and standard deviation, SIGMA. % % The size of X is the common size of the input arguments. A scalar input % functions as a constant matrix of the same size as the other inputs. % % Default values for MU and SIGMA are 0 and 1 respectively. % References: % [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical % Functions", Government Printing Office, 1964, 7.1.1 and 26.2.2 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 1.1.1.1 $ $Date: 2005/04/26 02:29:18 $ if nargin < 3, sigma = 1; end if nargin < 2; mu = 0; end [errorcode p mu sigma] = distchck(3,p,mu,sigma); if errorcode > 0 error('Requires non-scalar arguments to match in size.'); end % Allocate space for x. x = zeros(size(p)); % Return NaN if the arguments are outside their respective limits. k = find(sigma <= 0 | p < 0 | p > 1); if any(k) tmp = NaN; x(k) = tmp(ones(size(k))); end % Put in the correct values when P is either 0 or 1. k = find(p == 0); if any(k) tmp = Inf; x(k) = -tmp(ones(size(k))); end k = find(p == 1); if any(k) tmp = Inf; x(k) = tmp(ones(size(k))); end % Compute the inverse function for the intermediate values. k = find(p > 0 & p < 1 & sigma > 0); if any(k), x(k) = sqrt(2) * sigma(k) .* erfinv(2 * p(k) - 1) + mu(k); end