Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/HMM/fwdback.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [alpha, beta, gamma, loglik, xi_summed, gamma2] = fwdback(init_state_distrib, ... transmat, obslik, varargin) % FWDBACK Compute the posterior probs. in an HMM using the forwards backwards algo. % % [alpha, beta, gamma, loglik, xi, gamma2] = fwdback(init_state_distrib, transmat, obslik, ...) % % Notation: % Y(t) = observation, Q(t) = hidden state, M(t) = mixture variable (for MOG outputs) % A(t) = discrete input (action) (for POMDP models) % % INPUT: % init_state_distrib(i) = Pr(Q(1) = i) % transmat(i,j) = Pr(Q(t) = j | Q(t-1)=i) % or transmat{a}(i,j) = Pr(Q(t) = j | Q(t-1)=i, A(t-1)=a) if there are discrete inputs % obslik(i,t) = Pr(Y(t)| Q(t)=i) % (Compute obslik using eval_pdf_xxx on your data sequence first.) % % Optional parameters may be passed as 'param_name', param_value pairs. % Parameter names are shown below; default values in [] - if none, argument is mandatory. % % For HMMs with MOG outputs: if you want to compute gamma2, you must specify % 'obslik2' - obslik(i,j,t) = Pr(Y(t)| Q(t)=i,M(t)=j) [] % 'mixmat' - mixmat(i,j) = Pr(M(t) = j | Q(t)=i) [] % % For HMMs with discrete inputs: % 'act' - act(t) = action performed at step t % % Optional arguments: % 'fwd_only' - if 1, only do a forwards pass and set beta=[], gamma2=[] [0] % 'scaled' - if 1, normalize alphas and betas to prevent underflow [1] % 'maximize' - if 1, use max-product instead of sum-product [0] % % OUTPUTS: % alpha(i,t) = p(Q(t)=i | y(1:t)) (or p(Q(t)=i, y(1:t)) if scaled=0) % beta(i,t) = p(y(t+1:T) | Q(t)=i)*p(y(t+1:T)|y(1:t)) (or p(y(t+1:T) | Q(t)=i) if scaled=0) % gamma(i,t) = p(Q(t)=i | y(1:T)) % loglik = log p(y(1:T)) % xi(i,j,t-1) = p(Q(t-1)=i, Q(t)=j | y(1:T)) - NO LONGER COMPUTED % xi_summed(i,j) = sum_{t=}^{T-1} xi(i,j,t) - changed made by Herbert Jaeger % gamma2(j,k,t) = p(Q(t)=j, M(t)=k | y(1:T)) (only for MOG outputs) % % If fwd_only = 1, these become % alpha(i,t) = p(Q(t)=i | y(1:t)) % beta = [] % gamma(i,t) = p(Q(t)=i | y(1:t)) % xi(i,j,t-1) = p(Q(t-1)=i, Q(t)=j | y(1:t)) % gamma2 = [] % % Note: we only compute xi if it is requested as a return argument, since it can be very large. % Similarly, we only compute gamma2 on request (and if using MOG outputs). % % Examples: % % [alpha, beta, gamma, loglik] = fwdback(pi, A, multinomial_prob(sequence, B)); % % [B, B2] = mixgauss_prob(data, mu, Sigma, mixmat); % [alpha, beta, gamma, loglik, xi, gamma2] = fwdback(pi, A, B, 'obslik2', B2, 'mixmat', mixmat); if nargout >= 5, compute_xi = 1; else compute_xi = 0; end if nargout >= 6, compute_gamma2 = 1; else compute_gamma2 = 0; end [obslik2, mixmat, fwd_only, scaled, act, maximize, compute_xi, compute_gamma2] = ... process_options(varargin, ... 'obslik2', [], 'mixmat', [], ... 'fwd_only', 0, 'scaled', 1, 'act', [], 'maximize', 0, ... 'compute_xi', compute_xi, 'compute_gamma2', compute_gamma2); [Q T] = size(obslik); if isempty(obslik2) compute_gamma2 = 0; end if isempty(act) act = ones(1,T); transmat = { transmat } ; end scale = ones(1,T); % scale(t) = Pr(O(t) | O(1:t-1)) = 1/c(t) as defined by Rabiner (1989). % Hence prod_t scale(t) = Pr(O(1)) Pr(O(2)|O(1)) Pr(O(3) | O(1:2)) ... = Pr(O(1), ... ,O(T)) % or log P = sum_t log scale(t). % Rabiner suggests multiplying beta(t) by scale(t), but we can instead % normalise beta(t) - the constants will cancel when we compute gamma. loglik = 0; alpha = zeros(Q,T); gamma = zeros(Q,T); if compute_xi xi_summed = zeros(Q,Q); else xi_summed = []; end %%%%%%%%% Forwards %%%%%%%%%% t = 1; alpha(:,1) = init_state_distrib(:) .* obslik(:,t); if scaled %[alpha(:,t), scale(t)] = normaliseC(alpha(:,t)); [alpha(:,t), scale(t)] = normalise(alpha(:,t)); end assert(approxeq(sum(alpha(:,t)),1)) for t=2:T %trans = transmat(:,:,act(t-1))'; trans = transmat{act(t-1)}; if maximize m = max_mult(trans', alpha(:,t-1)); %A = repmat(alpha(:,t-1), [1 Q]); %m = max(trans .* A, [], 1); else m = trans' * alpha(:,t-1); end alpha(:,t) = m(:) .* obslik(:,t); if scaled %[alpha(:,t), scale(t)] = normaliseC(alpha(:,t)); [alpha(:,t), scale(t)] = normalise(alpha(:,t)); end if compute_xi & fwd_only % useful for online EM %xi(:,:,t-1) = normaliseC((alpha(:,t-1) * obslik(:,t)') .* trans); xi_summed = xi_summed + normalise((alpha(:,t-1) * obslik(:,t)') .* trans); end assert(approxeq(sum(alpha(:,t)),1)) end if scaled if any(scale==0) loglik = -inf; else loglik = sum(log(scale)); end else loglik = log(sum(alpha(:,T))); end if fwd_only gamma = alpha; beta = []; gamma2 = []; return; end %%%%%%%%% Backwards %%%%%%%%%% beta = zeros(Q,T); if compute_gamma2 M = size(mixmat, 2); gamma2 = zeros(Q,M,T); else gamma2 = []; end beta(:,T) = ones(Q,1); %gamma(:,T) = normaliseC(alpha(:,T) .* beta(:,T)); gamma(:,T) = normalise(alpha(:,T) .* beta(:,T)); t=T; if compute_gamma2 denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]); %gamma2(:,:,t) = normaliseC(obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M])); % wrong! end for t=T-1:-1:1 b = beta(:,t+1) .* obslik(:,t+1); %trans = transmat(:,:,act(t)); trans = transmat{act(t)}; if maximize B = repmat(b(:)', Q, 1); beta(:,t) = max(trans .* B, [], 2); else beta(:,t) = trans * b; end if scaled %beta(:,t) = normaliseC(beta(:,t)); beta(:,t) = normalise(beta(:,t)); end %gamma(:,t) = normaliseC(alpha(:,t) .* beta(:,t)); gamma(:,t) = normalise(alpha(:,t) .* beta(:,t)); if compute_xi %xi(:,:,t) = normaliseC((trans .* (alpha(:,t) * b'))); xi_summed = xi_summed + normalise((trans .* (alpha(:,t) * b'))); end if compute_gamma2 denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]); %gamma2(:,:,t) = normaliseC(obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M])); end end % We now explain the equation for gamma2 % Let zt=y(1:t-1,t+1:T) be all observations except y(t) % gamma2(Q,M,t) = P(Qt,Mt|yt,zt) = P(yt|Qt,Mt,zt) P(Qt,Mt|zt) / P(yt|zt) % = P(yt|Qt,Mt) P(Mt|Qt) P(Qt|zt) / P(yt|zt) % Now gamma(Q,t) = P(Qt|yt,zt) = P(yt|Qt) P(Qt|zt) / P(yt|zt) % hence % P(Qt,Mt|yt,zt) = P(yt|Qt,Mt) P(Mt|Qt) [P(Qt|yt,zt) P(yt|zt) / P(yt|Qt)] / P(yt|zt) % = P(yt|Qt,Mt) P(Mt|Qt) P(Qt|yt,zt) / P(yt|Qt)