Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/HMM/dhmm_em_online_demo.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Example of online EM applied to a simple POMDP with fixed action seq clear all % Create a really easy model to learn rand('state', 1); O = 2; S = 2; A = 2; prior0 = [1 0]'; transmat0 = cell(1,A); transmat0{1} = [0.9 0.1; 0.1 0.9]; % long runs of 1s and 2s transmat0{2} = [0.1 0.9; 0.9 0.1]; % short runs obsmat0 = eye(2); %prior0 = normalise(rand(S,1)); %transmat0 = mk_stochastic(rand(S,S)); %obsmat0 = mk_stochastic(rand(S,O)); T = 10; act = [1*ones(1,25) 2*ones(1,25) 1*ones(1,25) 2*ones(1,25)]; data = pomdp_sample(prior0, transmat0, obsmat0, act); %data = sample_dhmm(prior0, transmat0, obsmat0, T, 1); % Initial guess of params rand('state', 2); % different seed! transmat1 = cell(1,A); for a=1:A transmat1{a} = mk_stochastic(rand(S,S)); end obsmat1 = mk_stochastic(rand(S,O)); prior1 = prior0; % so it labels states the same way % Uniformative Dirichlet prior (expected sufficient statistics / pseudo counts) e = 0.001; ess_trans = cell(1,A); for a=1:A ess_trans{a} = repmat(e, S, S); end ess_emit = repmat(e, S, O); % Params w = 2; decay_sched = [0.1:0.1:0.9]; % Initialize LL1 = zeros(1,T); t = 1; y = data(t); data_win = y; act_win = [1]; % arbitrary initial value [prior1, LL1(1)] = normalise(prior1 .* obsmat1(:,y)); % Iterate for t=2:T y = data(t); a = act(t); if t <= w data_win = [data_win y]; act_win = [act_win a]; else data_win = [data_win(2:end) y]; act_win = [act_win(2:end) a]; prior1 = gamma(:, 2); end d = decay_sched(min(t, length(decay_sched))); [transmat1, obsmat1, ess_trans, ess_emit, gamma, ll] = dhmm_em_online(... prior1, transmat1, obsmat1, ess_trans, ess_emit, d, data_win, act_win); bel = gamma(:, end); LL1(t) = ll/length(data_win); %fprintf('t=%d, ll=%f\n', t, ll); end LL1(1) = LL1(2); % since initial likelihood is for 1 slice plot(1:T, LL1, 'rx-'); % compare with offline learning if 0 rand('state', 2); % same seed as online learner transmat2 = cell(1,A); for a=1:A transmat2{a} = mk_stochastic(rand(S,S)); end obsmat2 = mk_stochastic(rand(S,O)); prior2 = prior0; [LL2, prior2, transmat2, obsmat2] = dhmm_em(data, prior2, transmat2, obsmat2, .... 'max_iter', 10, 'thresh', 1e-3, 'verbose', 1, 'act', act); LL2 = LL2 / T end