Mercurial > hg > camir-aes2014
view toolboxes/distance_learning/mlr/separationOracle/separationOraclePrecAtK.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [Y, Loss] = separationOraclePrecAtK(q, D, pos, neg, k) % % [Y,Loss] = separationOraclePrecAtK(q, D, pos, neg, k) % % q = index of the query point % D = the current distance matrix % pos = indices of relevant results for q % neg = indices of irrelevant results for q % k = length of the list to consider % % Y is a permutation 1:n corresponding to the maximally % violated constraint % % Loss is the loss for Y, in this case, 1-Prec@k(Y) % First, sort the documents in descending order of W'Phi(q,x) % Phi = - (X(q) - X(x)) * (X(q) - X(x))' % Sort the positive documents ScorePos = - D(pos,q); [Vpos, Ipos] = sort(full(ScorePos'), 'descend'); Ipos = pos(Ipos); % Sort the negative documents ScoreNeg = -D(neg,q); [Vneg, Ineg] = sort(full(ScoreNeg'), 'descend'); Ineg = neg(Ineg); % Now, solve the DP for the interleaving numPos = length(pos); numNeg = length(neg); n = numPos + numNeg; cVpos = cumsum(Vpos); cVneg = cumsum(Vneg); % If we don't have enough positive (or negative) examples, scale k down k = min([k, numPos, numNeg]); % Algorithm: % For each precision score in 0, 1/k, 2/k, ... 1 % Calculate maximum discriminant score for that precision level Precision = (0:(1/k):1)'; Discriminant = zeros(k+1, 1); NegsBefore = zeros(numPos, k+1); % For 0 precision, all positives go after the first k negatives NegsBefore(:,1) = k + binarysearch(Vpos, Vneg(k+1:end)); Discriminant(1) = Vpos * (numNeg - 2 * NegsBefore(:,1)) + numPos * cVneg(end) ... - 2 * sum(cVneg(NegsBefore((NegsBefore(:,1) > 0),1))); % For precision (a-1)/k, swap the (a-1)'th positive doc % into the top (k-a) negative docs for a = 2:(k+1) NegsBefore(:,a) = NegsBefore(:,a-1); % We have a-1 positives, and k - (a-1) negatives NegsBefore(a-1, a) = binarysearch(Vpos(a-1), Vneg(1:(k-a+1))); % There were NegsBefore(a-1,a-1) negatives before (a-1) % Now there are NegsBefore(a,a-1) Discriminant(a) = Discriminant(a-1) ... + 2 * (NegsBefore(a-1,a-1) - NegsBefore(a-1,a)) * Vpos(a-1); if NegsBefore(a-1,a-1) > 0 Discriminant(a) = Discriminant(a) + 2 * cVneg(NegsBefore(a-1,a-1)); end if NegsBefore(a-1,a) > 0 Discriminant(a) = Discriminant(a) - 2 * cVneg(NegsBefore(a-1,a)); end end % Normalize discriminant scores Discriminant = Discriminant / (numPos * numNeg); [s, x] = max(Discriminant - Precision); % Now we know that there are x-1 relevant docs in the max ranking % Construct Y from NegsBefore(x,:) Y = nan * ones(n,1); Y((1:numPos)' + NegsBefore(:,x)) = Ipos; Y(isnan(Y)) = Ineg; % Compute loss for this list Loss = 1 - Precision(x); end