Mercurial > hg > camir-aes2014
view toolboxes/distance_learning/mlr/rmlr_train.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [W, Xi, Diagnostics] = rmlr_train(X, Y, Cslack, varargin) %[W, Xi, D] = rmlr_train(X, Y, C, LOSS, k, REG, Diagonal, stochastic, lam, STRUCTREG) % % [W, Xi, D] = rmlr_train(X, Y, C,...) % % X = d*n data matrix % Y = either n-by-1 label of vectors % OR % n-by-2 cell array where % Y{q,1} contains relevant indices for q, and % Y{q,2} contains irrelevant indices for q % % C >= 0 slack trade-off parameter (default=1) % % W = the learned metric % Xi = slack value on the learned metric % D = diagnostics % % Optional arguments: % % [W, Xi, D] = rmlr_train(X, Y, C, LOSS) % where LOSS is one of: % 'AUC': Area under ROC curve (default) % 'KNN': KNN accuracy % 'Prec@k': Precision-at-k % 'MAP': Mean Average Precision % 'MRR': Mean Reciprocal Rank % 'NDCG': Normalized Discounted Cumulative Gain % % [W, Xi, D] = rmlr_train(X, Y, C, LOSS, k) % where k is the number of neighbors for Prec@k or NDCG % (default=3) % % [W, Xi, D] = rmlr_train(X, Y, C, LOSS, k, REG) % where REG defines the regularization on W, and is one of: % 0: no regularization % 1: 1-norm: trace(W) (default) % 2: 2-norm: trace(W' * W) % 3: Kernel: trace(W * X), assumes X is square and positive-definite % % [W, Xi, D] = rmlr_train(X, Y, C, LOSS, k, REG, Diagonal) % Not implemented as learning a diagonal W metric just reduces to MLR because ||W||_2,1 = trace(W) when W is diagonal. % % [W, Xi, D] = rmlr_train(X, Y, C, LOSS, k, REG, Diagonal, B) % where B > 0 enables stochastic optimization with batch size B % % [W, Xi, D] = rmlr_train(X, Y, C, LOSS, k, REG, Diagonal, B, lambda) % lambda is the desired value of the hyperparameter which is the coefficient of ||W||_2,1. Default is 1 if lambda is not set % [W, Xi, D] = rmlr_train(X, Y, C, LOSS, k, REG, Diagonal, B, lambda, CC) % Set ConstraintClock to CC (default: 20, 100) % % [W, Xi, D] = rmlr_train(X, Y, C, LOSS, k, REG, Diagonal, B, lambda, CC, E) % Set ConstraintClock to E (default: 1e-3) % TIME_START = tic(); global C; C = Cslack; [d,n,m] = size(X); if m > 1 MKL = 1; else MKL = 0; end if nargin < 3 C = 1; end %%% % Default options: global CP SO PSI REG FEASIBLE LOSS DISTANCE SETDISTANCE CPGRADIENT STRUCTKERNEL DUALW THRESH INIT; global RHO; %%% % Augmented lagrangian factor RHO = 1; % </modified> global FEASIBLE_COUNT; FEASIBLE_COUNT = 0; CP = @cuttingPlaneFull; SO = @separationOracleAUC; PSI = @metricPsiPO; if ~MKL INIT = @initializeFull; REG = @regularizeTraceFull; STRUCTKERNEL= @structKernelLinear; DUALW = @dualWLinear; FEASIBLE = @feasibleFull; THRESH = @threshFull_admmMixed; CPGRADIENT = @cpGradientFull; DISTANCE = @distanceFull; SETDISTANCE = @setDistanceFull; LOSS = @lossHinge; Regularizer = 'Trace'; else INIT = @initializeFullMKL; REG = @regularizeMKLFull; STRUCTKERNEL= @structKernelMKL; DUALW = @dualWMKL; FEASIBLE = @feasibleFullMKL; THRESH = @threshFull_admmMixed; CPGRADIENT = @cpGradientFullMKL; DISTANCE = @distanceFullMKL; SETDISTANCE = @setDistanceFullMKL; LOSS = @lossHingeFullMKL; Regularizer = 'Trace'; end Loss = 'AUC'; Feature = 'metricPsiPO'; %%% % Default k for prec@k, ndcg k = 3; %%% % Stochastic violator selection? STOCHASTIC = 0; batchSize = n; SAMPLES = 1:n; if nargin > 3 switch lower(varargin{1}) case {'auc'} SO = @separationOracleAUC; PSI = @metricPsiPO; Loss = 'AUC'; Feature = 'metricPsiPO'; case {'knn'} SO = @separationOracleKNN; PSI = @metricPsiPO; Loss = 'KNN'; Feature = 'metricPsiPO'; case {'prec@k'} SO = @separationOraclePrecAtK; PSI = @metricPsiPO; Loss = 'Prec@k'; Feature = 'metricPsiPO'; case {'map'} SO = @separationOracleMAP; PSI = @metricPsiPO; Loss = 'MAP'; Feature = 'metricPsiPO'; case {'mrr'} SO = @separationOracleMRR; PSI = @metricPsiPO; Loss = 'MRR'; Feature = 'metricPsiPO'; case {'ndcg'} SO = @separationOracleNDCG; PSI = @metricPsiPO; Loss = 'NDCG'; Feature = 'metricPsiPO'; otherwise error('MLR:LOSS', ... 'Unknown loss function: %s', varargin{1}); end end if nargin > 4 k = varargin{2}; end Diagonal = 0; %Diagonal case is not implemented. Use mlr_train for that. if nargin > 5 switch(varargin{3}) case {0} REG = @regularizeNone; Regularizer = 'None'; THRESH = @threshFull_admmMixed; case {1} if MKL REG = @regularizeMKLFull; STRUCTKERNEL= @structKernelMKL; DUALW = @dualWMKL; else REG = @regularizeTraceFull; STRUCTKERNEL= @structKernelLinear; DUALW = @dualWLinear; end Regularizer = 'Trace'; case {2} REG = @regularizeTwoFull; Regularizer = '2-norm'; error('MLR:REGULARIZER', '2-norm regularization no longer supported'); case {3} if MKL REG = @regularizeMKLFull; STRUCTKERNEL= @structKernelMKL; DUALW = @dualWMKL; else REG = @regularizeKernel; STRUCTKERNEL= @structKernelMKL; DUALW = @dualWMKL; end Regularizer = 'Kernel'; otherwise error('MLR:REGULARIZER', ... 'Unknown regularization: %s', varargin{3}); end end % Are we in stochastic optimization mode? if nargin > 7 && varargin{5} > 0 if varargin{5} < n STOCHASTIC = 1; CP = @cuttingPlaneRandom; batchSize = varargin{5}; end end % Algorithm % % Working <- [] % % repeat: % (W, Xi) <- solver(X, Y, C, Working) % % for i = 1:|X| % y^_i <- argmax_y^ ( Delta(y*_i, y^) + w' Psi(x_i, y^) ) % % Working <- Working + (y^_1,y^_2,...,y^_n) % until mean(Delta(y*_i, y_i)) - mean(w' (Psi(x_i,y_i) - Psi(x_i,y^_i))) % <= Xi + epsilon if nargin > 8 lam = varargin{6}; else lam = 1; end disp(['lam = ' num2str(lam)]) global DEBUG; if isempty(DEBUG) DEBUG = 0; end DEBUG = 1; %%% % Max calls to seperation oracle MAX_CALLS = 200; MIN_CALLS = 10; %%% % Timer to eliminate old constraints ConstraintClock = 500; % standard: 500 if nargin > 9 && varargin{7} > 0 ConstraintClock = varargin{7}; end %%% % Convergence criteria for worst-violated constraint E = 1e-3; if nargin > 10 && varargin{8} > 0 E = varargin{8}; end %XXX: 2012-01-31 21:29:50 by Brian McFee <bmcfee@cs.ucsd.edu> % no longer belongs here % Initialize W = INIT(X); global ADMM_Z ADMM_V ADMM_UW ADMM_UV; ADMM_Z = W; ADMM_V = W; ADMM_UW = 0 * ADMM_Z; ADMM_UV = 0 * ADMM_Z; ClassScores = []; if isa(Y, 'double') Ypos = []; Yneg = []; ClassScores = synthesizeRelevance(Y); elseif isa(Y, 'cell') && size(Y,1) == n && size(Y,2) == 2 dbprint(2, 'Using supplied Ypos/Yneg'); Ypos = Y(:,1); Yneg = Y(:,2); % Compute the valid samples SAMPLES = find( ~(cellfun(@isempty, Y(:,1)) | cellfun(@isempty, Y(:,2)))); elseif isa(Y, 'cell') && size(Y,1) == n && size(Y,2) == 1 dbprint(2, 'Using supplied Ypos/synthesized Yneg'); Ypos = Y(:,1); Yneg = []; SAMPLES = find( ~(cellfun(@isempty, Y(:,1)))); else error('MLR:LABELS', 'Incorrect format for Y.'); end %% % If we don't have enough data to make the batch, cut the batch batchSize = min([batchSize, length(SAMPLES)]); Diagnostics = struct( 'loss', Loss, ... % Which loss are we optimizing? 'feature', Feature, ... % Which ranking feature is used? 'k', k, ... % What is the ranking length? 'regularizer', Regularizer, ... % What regularization is used? 'diagonal', Diagonal, ... % 0 for full metric, 1 for diagonal 'num_calls_SO', 0, ... % Calls to separation oracle 'num_calls_solver', 0, ... % Calls to solver 'time_SO', 0, ... % Time in separation oracle 'time_solver', 0, ... % Time in solver 'time_total', 0, ... % Total time 'f', [], ... % Objective value 'num_steps', [], ... % Number of steps for each solver run 'num_constraints', [], ... % Number of constraints for each run 'Xi', [], ... % Slack achieved for each run 'Delta', [], ... % Mean loss for each SO call 'gap', [], ... % Gap between loss and slack 'C', C, ... % Slack trade-off 'epsilon', E, ... % Convergence threshold 'feasible_count', FEASIBLE_COUNT, ... % Counter for # svd's 'constraint_timer', ConstraintClock); % Time before evicting old constraints global PsiR; global PsiClock; PsiR = {}; PsiClock = []; Xi = -Inf; Margins = []; H = []; Q = []; if STOCHASTIC dbprint(2, 'STOCHASTIC OPTIMIZATION: Batch size is %d/%d', batchSize, n); end dbprint(2,['Regularizer is "' Regularizer '"']); while 1 if Diagnostics.num_calls_solver > MAX_CALLS dbprint(2,['Calls to SO >= ' num2str(MAX_CALLS)]); break; end dbprint(2, 'Round %03d', Diagnostics.num_calls_solver); % Generate a constraint set Termination = -Inf; dbprint(2, 'Calling separation oracle...'); [PsiNew, Mnew, SO_time] = CP(k, X, W, Ypos, Yneg, batchSize, SAMPLES, ClassScores); Termination = LOSS(W, PsiNew, Mnew, 0); Diagnostics.num_calls_SO = Diagnostics.num_calls_SO + 1; Diagnostics.time_SO = Diagnostics.time_SO + SO_time; Margins = cat(1, Margins, Mnew); PsiR = cat(1, PsiR, PsiNew); PsiClock = cat(1, PsiClock, 0); H = expandKernel(H); Q = expandRegularizer(Q, X, W); dbprint(2, '\n\tActive constraints : %d', length(PsiClock)); dbprint(2, '\t Mean loss : %0.4f', Mnew); dbprint(2, '\t Current loss Xi : %0.4f', Xi); dbprint(2, '\t Termination -Xi < E : %0.4f <? %.04f\n', Termination - Xi, E); Diagnostics.gap = cat(1, Diagnostics.gap, Termination - Xi); Diagnostics.Delta = cat(1, Diagnostics.Delta, Mnew); %if Termination <= Xi + E if Termination <= Xi + E && Diagnostics.num_calls_solver > MIN_CALLS %if Termination - Xi <= E dbprint(1, 'Done.'); break; end dbprint(1, 'Calling solver...'); PsiClock = PsiClock + 1; Solver_time = tic(); % disp('Robust MLR') [W, Xi, Dsolver] = rmlr_admm(C, X, Margins, H, Q, lam); Diagnostics.time_solver = Diagnostics.time_solver + toc(Solver_time); Diagnostics.num_calls_solver = Diagnostics.num_calls_solver + 1; Diagnostics.Xi = cat(1, Diagnostics.Xi, Xi); Diagnostics.f = cat(1, Diagnostics.f, Dsolver.f); Diagnostics.num_steps = cat(1, Diagnostics.num_steps, Dsolver.num_steps); %%% % Cull the old constraints GC = PsiClock < ConstraintClock; Margins = Margins(GC); PsiR = PsiR(GC); PsiClock = PsiClock(GC); H = H(GC, GC); Q = Q(GC); Diagnostics.num_constraints = cat(1, Diagnostics.num_constraints, length(PsiR)); end % Finish diagnostics Diagnostics.time_total = toc(TIME_START); Diagnostics.feasible_count = FEASIBLE_COUNT; end function H = expandKernel(H) global STRUCTKERNEL; global PsiR; m = length(H); H = padarray(H, [1 1], 0, 'post'); for i = 1:m+1 H(i,m+1) = STRUCTKERNEL( PsiR{i}, PsiR{m+1} ); H(m+1, i) = H(i, m+1); end end function Q = expandRegularizer(Q, K, W) % FIXME: 2012-01-31 21:34:15 by Brian McFee <bmcfee@cs.ucsd.edu> % does not support unregularized learning global PsiR; global STRUCTKERNEL REG; m = length(Q); Q(m+1,1) = STRUCTKERNEL(REG(W,K,1), PsiR{m+1}); end function ClassScores = synthesizeRelevance(Y) classes = unique(Y); nClasses = length(classes); ClassScores = struct( 'Y', Y, ... 'classes', classes, ... 'Ypos', [], ... 'Yneg', []); Ypos = cell(nClasses, 1); Yneg = cell(nClasses, 1); for c = 1:nClasses Ypos{c} = (Y == classes(c)); Yneg{c} = ~Ypos{c}; end ClassScores.Ypos = Ypos; ClassScores.Yneg = Yneg; end