Mercurial > hg > camir-aes2014
view toolboxes/distance_learning/mlr/loss/lossHinge.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function Xi = lossHinge(W, Psi, M, gradient) % % Xi = lossHinge(W, Psi, M, gradient) % % W: d*d metric % Psi: d*d feature matrix % M: the desired margin % gradient: if 0, returns the loss value % if 1, returns the gradient of the loss WRT W Xi = max(0, M - sum(sum(W .* Psi))); if gradient & Xi > 0 Xi = -Psi; end end