Mercurial > hg > camir-aes2014
view toolboxes/bioakustik_tools/conversion/extract_buchfink_xls.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
%seglengths %vols %periods %name % % datlen=size(data,1); % maxseglen=10; % clear segvol; % clear seglengths; % clear repetitions; % clear name; % % filectr=0; % lineptr=15; % % while lineptr <= size(textdata,1) % if ~strcmp('',textdata{lineptr,1}) % path = textdata{lineptr,1}; % end % if ~strcmp('',textdata{lineptr,2}) % filectr=filectr+1; % name{filectr} = strcat(path,'\',textdata{lineptr,2}); % datapos=lineptr-14; % % segctr=0; % while ~isnan(data(datapos,2))&& datapos < datlen % segctr=segctr+1; % seglengths(filectr,segctr)= data(datapos,2); % if ~isnan(data(datapos,3)) % repetitions(filectr,segctr)=data(datapos,3); % end % segvol(filectr,segctr)=data(datapos,4); % datapos=datapos+1; % lineptr = lineptr+1; % end % end % lineptr = lineptr+1; % end compl_len=sum(seglengths,2);%ins secs compl_std=std(compl_len); compl_mean=mean(compl_len); numsegs=seglengths>0; numsegs=sum(numsegs,2); meannumsegs=mean(numsegs) minnumsegs=min(numsegs) maxnumsegs=max(numsegs) for i=1:maxnumsegs %segmentlänge, betrachtet werden jeweils alle segs % mit ausreichender länge valid_cols=find(numsegs>=i); mean_seglen(i)=mean(seglengths(valid_cols,i)); min_seglen(i)=min(seglengths(valid_cols,i)); max_seglen(i)=max(seglengths(valid_cols,i)); std_seglen(i)=std(seglengths(valid_cols,i));%in s end % valid_cols=find(numsegs==floor(meannumsegs)); % for i=1:floor(mean(numsegs)) %segmentlänge, betrachtet werden jeweils alle segs % % mit genau floor(mittlerer) länge % mean_seglen2(i)=mean(seglengths(valid_cols,i)); % min_seglen2(i)=min(seglengths(valid_cols,i)); % max_seglen2(i)=max(seglengths(valid_cols,i)); % std_seglen2(i)=std(seglengths(valid_cols,i));%in s % end %längen seglen_all=reshape(seglengths,115*6,1); goodlens=find(seglen_all>0); mean_seglen_all=mean(seglen_all(goodlens)); std_seglen_all=std(seglen_all(goodlens)); for i=1:maxnumsegs segs(i)=sum(numsegs==i); end period_segs=sum(repetitions>0,2); for i=1:maxnumsegs havenumperiodsegs(i)=sum(period_segs==i); end segs_period=(repetitions>0); sum((period_segs==3)&(numsegs==4)) sum((period_segs==2)&(numsegs==4)) sum(((period_segs==4)&(numsegs==5))) sum(((period_segs==3)&(numsegs==5))) better_half_ind=find((period_segs==3)&(numsegs==4)); better_half_len=seglengths(better_half_ind,:); better_half_mean=mean(better_half_len,1); better_half_std=std(better_half_len); %wiederholungen period_all=reshape(repetitions,115*6,1); goodreps=find(period_all>0); period_all=period_all(goodreps); peri_all_mean=mean(period_all); peri_all_std=std(period_all); %frequenzen freqs = repetitions./(seglengths./1000); freqs_all=reshape(freqs,115*6,1); freqs_all=freqs_all(find(~isnan(freqs_all) & (freqs_all>0))); freqs_all_mean=mean(freqs_all); freqs_all_std=std(freqs_all); better_h_f=repetitions(better_half_ind,2:4)./(seglengths(better_half_ind,2:4)./1000); better_h_f_mean=mean(better_h_f); better_h_f_std=std(better_h_f); better_h_f_min=min(better_h_f); better_h_f_max=max(better_h_f); better_half2_ind=find((period_segs==4)&(numsegs==5)); better_h2_f=repetitions(better_half2_ind,2:5)./(seglengths(better_half2_ind,2:5)./1000); better_h2_f_mean=mean(better_h2_f); better_h2_f_std=std(better_h2_f); better_h2_f_min=min(better_h2_f); better_h2_f_max=max(better_h2_f); abweichung_f=better_h_f-repmat(better_h_f_mean,size(better_h_f,1),1); corrcoef(abweichung_f) abweichung2_f=better_h2_f-repmat(better_h2_f_mean,size(better_h2_f,1),1); corrcoef(abweichung2_f)