Mercurial > hg > camir-aes2014
view toolboxes/RBM/gen_training_rbm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [W visB hidB] = gen_training_krbm(conf,W,mW,train_file,train_label) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Training Knowledge Based RBM for generative classification % % conf: training setting % % W: weights of connections % % mW: mask of connections % % -*-sontran2012-*- % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% load data vars = whos('-file', train_file); A = load(train_file,vars(1).name); data = A.(vars(1).name); vars = whos('-file', train_label); A = load(train_label,vars(1).name); label = A.(vars(1).name); assert(~isempty(data),'[KRBM-GEN] Data is empty'); assert(size(data,1) == size(label,1),'[KRBM-GEN] Number of data and label mismatch'); Classes = unique(label)'; lNum = size(Classes,2); data = [data discrete2softmax(label,Classes)] %% initialization visNum = size(data,2); hidNum = conf.hidNum; sNum = conf.sNum; lr = conf.params(1); N = 10; % Number of epoch training with lr_1 W = [W;0.1*randn(visNum - size(W,1),size(W,2))]; W = [W 0.1*randn(size(W,1),hidNum-size(W,2))]; DW = zeros(size(W)); visB = zeros(1,visNum); DVB = zeros(1,visNum); hidB = zeros(1,hidNum); DHB = zeros(1,hidNum); visP = zeros(sNum,visNum); visN = zeros(sNum,visNum); visNs = zeros(sNum,visNum); hidP = zeros(sNum,hidNum); hidPs = zeros(sNum,hidNum); hidN = zeros(sNum,hidNum); hidNs = zeros(sNum,hidNum); %% Reconstruction error & evaluation error & early stopping mse = 0; omse = 0; inc_count = 0; MAX_INC = 3; % If the error increase MAX_INC times continuously, then stop training %% Average best settings n_best = 1; aW = size(W); aVB = size(visB); aHB = size(hidB); %% ==================== Start training =========================== %% for i=1:conf.eNum if i== N+1 lr = conf.params(2); end omse = mse; mse = 0; for j=1:conf.bNum visP = data((j-1)*conf.sNum+1:j*conf.sNum,:); %up hidP = logistic(visP*W + repmat(hidB,sNum,1)); hidPs = 1*(hidP >rand(sNum,hidNum)); hidNs = hidPs; for k=1:conf.gNum % down visN = hidNs*W' + repmat(visB,sNum,1); visN(:,1:visNum-lNum) = logistic(visN(:,1:visNum-lNum)); visN(:,visNum-lNum+1:visNum) = softmax_activation(visN(:,visNum-lNum+1:visNum)); visNs = [1*(visN(:,1:visNum-lNum)>rand(sNum,visNum-lNum)) visN(:,visNum-lNum+1:visNum)]; if j==5 && k==1, observe_reconstruction(visN(:,1:visNum-lNum),sNum,i,28,28); end % up hidN = logistic(visNs*W + repmat(hidB,sNum,1)); hidNs = 1*(hidN>rand(sNum,hidNum)); end % Compute MSE for reconstruction rdiff = (visP - visN); mse = mse + sum(sum(rdiff.*rdiff))/(sNum*visNum); % Update W,visB,hidB diff = (visP'*hidP - visNs'*hidN)/sNum; DW = lr*(diff - conf.params(4)*W) + conf.params(3)*DW; W = W + DW; % W = W.*mW; DVB = lr*sum(visP - visN,1)/sNum + conf.params(3)*DVB; visB = visB + DVB; DHB = lr*sum(hidP - hidN,1)/sNum + conf.params(3)*DHB; hidB = hidB + DHB; end if mse > omse inc_count = inc_count + 1 else inc_count = 0; end if inc_count> MAX_INC, break; end; fprintf('Epoch %d : MSE = %f\n',i,mse); end end