Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_unit_coords.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function Coords = som_unit_coords(topol,lattice,shape) %SOM_UNIT_COORDS Locations of units on the SOM grid. % % Co = som_unit_coords(topol, [lattice], [shape]) % % Co = som_unit_coords(sMap); % Co = som_unit_coords(sMap.topol); % Co = som_unit_coords(msize, 'hexa', 'cyl'); % Co = som_unit_coords([10 4 4], 'rect', 'toroid'); % % Input and output arguments ([]'s are optional): % topol topology of the SOM grid % (struct) topology or map struct % (vector) the 'msize' field of topology struct % [lattice] (string) map lattice, 'rect' by default % [shape] (string) map shape, 'sheet' by default % % Co (matrix, size [munits k]) coordinates for each map unit % % For more help, try 'type som_unit_coords' or check out online documentation. % See also SOM_UNIT_DISTS, SOM_UNIT_NEIGHS. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_unit_coords % % PURPOSE % % Returns map grid coordinates for the units of a Self-Organizing Map. % % SYNTAX % % Co = som_unit_coords(sTopol); % Co = som_unit_coords(sM.topol); % Co = som_unit_coords(msize); % Co = som_unit_coords(msize,'hexa'); % Co = som_unit_coords(msize,'rect','toroid'); % % DESCRIPTION % % Calculates the map grid coordinates of the units of a SOM based on % the given topology. The coordinates are such that they can be used to % position map units in space. In case of 'sheet' shape they can be % (and are) used to measure interunit distances. % % NOTE: for 'hexa' lattice, the x-coordinates of every other row are shifted % by +0.5, and the y-coordinates are multiplied by sqrt(0.75). This is done % to make distances of a unit to all its six neighbors equal. It is not % possible to use 'hexa' lattice with higher than 2-dimensional map grids. % % 'cyl' and 'toroid' shapes: the coordinates are initially determined as % in case of 'sheet' shape, but are then bended around the x- or the % x- and then y-axes to get the desired shape. % % POSSIBLE BUGS % % I don't know if the bending operation works ok for high-dimensional % map grids. Anyway, if anyone wants to make a 4-dimensional % toroid map, (s)he deserves it. % % REQUIRED INPUT ARGUMENTS % % topol Map grid dimensions. % (struct) topology struct or map struct, the topology % (msize, lattice, shape) of the map is taken from % the appropriate fields (see e.g. SOM_SET) % (vector) the vector which gives the size of the map grid % (msize-field of the topology struct). % % OPTIONAL INPUT ARGUMENTS % % lattice (string) The map lattice, either 'rect' or 'hexa'. Default % is 'rect'. 'hexa' can only be used with 1- or % 2-dimensional map grids. % shape (string) The map shape, either 'sheet', 'cyl' or 'toroid'. % Default is 'sheet'. % % OUTPUT ARGUMENTS % % Co (matrix) coordinates for each map units, size is [munits k] % where k is 2, or more if the map grid is higher % dimensional or the shape is 'cyl' or 'toroid' % % EXAMPLES % % Simplest case: % Co = som_unit_coords(sTopol); % Co = som_unit_coords(sMap.topol); % Co = som_unit_coords(msize); % Co = som_unit_coords([10 10]); % % If topology is given as vector, lattice is 'rect' and shape is 'sheet' % by default. To change these, you can use the optional arguments: % Co = som_unit_coords(msize, 'hexa', 'toroid'); % % The coordinates can also be calculated for high-dimensional grids: % Co = som_unit_coords([4 4 4 4 4 4]); % % SEE ALSO % % som_unit_dists Calculate interunit distance along the map grid. % som_unit_neighs Calculate neighborhoods of map units. % Copyright (c) 1997-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 1.0beta juuso 110997 % Version 2.0beta juuso 101199 070600 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Check arguments error(nargchk(1, 3, nargin)); % default values sTopol = som_set('som_topol','lattice','rect'); % topol if isstruct(topol), switch topol.type, case 'som_map', sTopol = topol.topol; case 'som_topol', sTopol = topol; end elseif iscell(topol), for i=1:length(topol), if isnumeric(topol{i}), sTopol.msize = topol{i}; elseif ischar(topol{i}), switch topol{i}, case {'rect','hexa'}, sTopol.lattice = topol{i}; case {'sheet','cyl','toroid'}, sTopol.shape = topol{i}; end end end else sTopol.msize = topol; end if prod(sTopol.msize)==0, error('Map size is 0.'); end % lattice if nargin>1 & ~isempty(lattice) & ~isnan(lattice), sTopol.lattice = lattice; end % shape if nargin>2 & ~isempty(shape) & ~isnan(shape), sTopol.shape = shape; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Action msize = sTopol.msize; lattice = sTopol.lattice; shape = sTopol.shape; % init variables if length(msize)==1, msize = [msize 1]; end munits = prod(msize); mdim = length(msize); Coords = zeros(munits,mdim); % initial coordinates for each map unit ('rect' lattice, 'sheet' shape) k = [1 cumprod(msize(1:end-1))]; inds = [0:(munits-1)]'; for i = mdim:-1:1, Coords(:,i) = floor(inds/k(i)); % these are subscripts in matrix-notation inds = rem(inds,k(i)); end % change subscripts to coordinates (move from (ij)-notation to (xy)-notation) Coords(:,[1 2]) = fliplr(Coords(:,[1 2])); % 'hexa' lattice if strcmp(lattice,'hexa'), % check if mdim > 2, error('You can only use hexa lattice with 1- or 2-dimensional maps.'); end % offset x-coordinates of every other row inds_for_row = (cumsum(ones(msize(2),1))-1)*msize(1); for i=2:2:msize(1), Coords(i+inds_for_row,1) = Coords(i+inds_for_row,1) + 0.5; end end % shapes switch shape, case 'sheet', if strcmp(lattice,'hexa'), % this correction is made to make distances to all % neighboring units equal Coords(:,2) = Coords(:,2)*sqrt(0.75); end case 'cyl', % to make cylinder the coordinates must lie in 3D space, at least if mdim<3, Coords = [Coords ones(munits,1)]; mdim = 3; end % Bend the coordinates to a circle in the plane formed by x- and % and z-axis. Notice that the angle to which the last coordinates % are bended is _not_ 360 degrees, because that would be equal to % the angle of the first coordinates (0 degrees). Coords(:,1) = Coords(:,1)/max(Coords(:,1)); Coords(:,1) = 2*pi * Coords(:,1) * msize(2)/(msize(2)+1); Coords(:,[1 3]) = [cos(Coords(:,1)) sin(Coords(:,1))]; case 'toroid', % NOTE: if lattice is 'hexa', the msize(1) should be even, otherwise % the bending the upper and lower edges of the map do not match % to each other if strcmp(lattice,'hexa') & rem(msize(1),2)==1, warning('Map size along y-coordinate is not even.'); end % to make toroid the coordinates must lie in 3D space, at least if mdim<3, Coords = [Coords ones(munits,1)]; mdim = 3; end % First bend the coordinates to a circle in the plane formed % by x- and z-axis. Then bend in the plane formed by y- and % z-axis. (See also the notes in 'cyl'). Coords(:,1) = Coords(:,1)/max(Coords(:,1)); Coords(:,1) = 2*pi * Coords(:,1) * msize(2)/(msize(2)+1); Coords(:,[1 3]) = [cos(Coords(:,1)) sin(Coords(:,1))]; Coords(:,2) = Coords(:,2)/max(Coords(:,2)); Coords(:,2) = 2*pi * Coords(:,2) * msize(1)/(msize(1)+1); Coords(:,3) = Coords(:,3) - min(Coords(:,3)) + 1; Coords(:,[2 3]) = Coords(:,[3 3]) .* [cos(Coords(:,2)) sin(Coords(:,2))]; end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% subfunctions function C = bend(cx,cy,angle,xishexa) dx = max(cx) - min(cx); if dx ~= 0, % in case of hexagonal lattice it must be taken into account that % coordinates of every second row are +0.5 off to the right if xishexa, dx = dx-0.5; end cx = angle*(cx - min(cx))/dx; end C(:,1) = (cy - min(cy)+1) .* cos(cx); C(:,2) = (cy - min(cy)+1) .* sin(cx); % end of bend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%