Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_sompaktrain.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [sMap, sTrain] = som_sompaktrain(sMap, D, varargin) %SOM_SOMPAKTRAIN Use SOM_PAK to train the Self-Organizing Map. % % [sM,sT] = som_sompaktrain(sM, D, [[argID,] value, ...]) % % sM = som_sompaktrain(sM,D); % sM = som_sompaktrain(sM,sD,'alpha_type','inv'); % [M,sT] = som_sompaktrain(M,D,'bubble','trainlen',10,'inv','hexa'); % % Input and output arguments ([]'s are optional): % sM (struct) map struct, the trained and updated map is returned % (matrix) codebook matrix of a self-organizing map % size munits x dim or msize(1) x ... x msize(k) x dim % The trained map codebook is returned. % D (struct) training data; data struct % (matrix) training data, size dlen x dim % (string) name of data file % [argID, (string) See below. The values which are unambiguous can % value] (varies) be given without the preceeding argID. % % sT (struct) learning parameters used during the training % % Here are the valid argument IDs and corresponding values. The values which % are unambiguous (marked with '*') can be given without the preceeding argID. % 'msize' (vector) map size % 'radius_ini' (scalar) neighborhood radius % 'radius' = 'radius_ini' % 'alpha_ini' (scalar) initial learning rate % 'alpha' = 'alpha_ini' % 'trainlen' (scalar) training length % 'seed' (scalar) seed for random number generator % 'snapfile' (string) base name for snapshot files % 'snapinterval' (scalar) snapshot interval % 'tlen_type' *(string) is the given trainlen 'samples' or 'epochs' % 'train' *(struct) train struct, parameters for training % 'sTrain','som_train' = 'train' % 'alpha_type' *(string) learning rate function, 'inv' or 'linear' % 'neigh' *(string) neighborhood function, 'gaussian' or 'bubble' % 'topol' *(struct) topology struct % 'som_topol','sTopol' = 'topol' % 'lattice' *(string) map lattice, 'hexa' or 'rect' % % For more help, try 'type som_sompaktrain' or check out online documentation. % See also SOM_MAKE, SOM_SEQTRAIN, SOM_BATCHTRAIN, SOM_TRAIN_STRUCT. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_sompaktrain % % PURPOSE % % Use SOM_PAK to train the Self-Organizing Map. % % SYNTAX % % sM = som_sompaktrain(sM,D); % sM = som_sompaktrain(sM,sD); % sM = som_sompaktrain(...,'argID',value,...); % sM = som_sompaktrain(...,value,...); % [sM,sT] = som_sompaktrain(M,D,...); % % DESCRIPTION % % Trains the given SOM (sM or M above) with the given training data (sD or % D) using SOM_PAK. If no optional arguments (argID, value) are % given, a default training is done, the parameters are obtained from % SOM_TRAIN_STRUCT function. Using optional arguments the training % parameters can be specified. Returns the trained and updated SOM and a % train struct which contains information on the training. % % Notice that the SOM_PAK program 'vsom' must be in the search path of your % shell. Alternatively, you can set a variable 'SOM_PAKDIR' in the Matlab % workspace to tell the som_sompaktrain where to find the 'vsom' program. % % Notice also that many of the training parameters are much more limited in % values than when using SOM Toolbox function for training: % - the map shape is always 'sheet' % - only initial value for neighborhood radius can be given % - neighborhood function can only be 'bubble' or 'gaussian' % - only initial value for learning rate can be given % - learning rate can only be 'linear' or 'inv' % - mask cannot be used: all variables are always used in BMU search % Any parameters not confirming to these restrictions will be converted % so that they do before training. On the other hand, there are some % additional options that are not present in the SOM Toolbox: % - random seed % - snapshot file and interval % % REQUIRED INPUT ARGUMENTS % % sM The map to be trained. % (struct) map struct % (matrix) codebook matrix (field .data of map struct) % Size is either [munits dim], in which case the map grid % dimensions (msize) should be specified with optional arguments, % or [msize(1) ... msize(k) dim] in which case the map % grid dimensions are taken from the size of the matrix. % Lattice, by default, is 'rect' and shape 'sheet'. % D Training data. % (struct) data struct % (matrix) data matrix, size [dlen dim] % (string) name of data file % % OPTIONAL INPUT ARGUMENTS % % argID (string) Argument identifier string (see below). % value (varies) Value for the argument (see below). % % The optional arguments can be given as 'argID',value -pairs. If an % argument is given value multiple times, the last one is % used. The valid IDs and corresponding values are listed below. The values % which are unambiguous (marked with '*') can be given without the % preceeding argID. % % 'msize' (vector) map grid dimensions. Default is the one % in sM (field sM.topol.msize) or % 'si = size(sM); msize = si(1:end-1);' % if only a codebook matrix was given. % 'radius_ini' (scalar) initial neighborhood radius % 'radius' (scalar) = 'radius_ini' % 'alpha_ini' (vector) initial learning rate % 'alpha' (scalar) = 'alpha_ini' % 'trainlen' (scalar) training length (see also 'tlen_type') % 'seed' (scalar) seed for random number generator % 'snapfile' (string) base name for snapshot files % 'snapinterval' (scalar) snapshot interval % 'tlen_type' *(string) is the trainlen argument given in 'epochs' or % in 'samples'. Default is 'epochs'. % 'train' *(struct) train struct, parameters for training. % Default parameters, unless specified, % are acquired using SOM_TRAIN_STRUCT (this % also applies for 'trainlen', 'alpha_type', % 'alpha_ini', 'radius_ini' and 'radius_fin'). % 'sTrain', 'som_topol' (struct) = 'train' % 'neigh' *(string) The used neighborhood function. Default is % the one in sM (field '.neigh') or 'gaussian' % if only a codebook matrix was given. The other % possible value is 'bubble'. % 'topol' *(struct) topology of the map. Default is the one % in sM (field '.topol'). % 'sTopol', 'som_topol' (struct) = 'topol' % 'alpha_type' *(string) learning rate function, 'inv' or 'linear' % 'lattice' *(string) map lattice. Default is the one in sM % (field sM.topol.lattice) or 'rect' % if only a codebook matrix was given. % % OUTPUT ARGUMENTS % % sM the trained map % (struct) if a map struct was given as input argument, a % map struct is also returned. The current training % is added to the training history (sM.trainhist). % The 'neigh' and 'mask' fields of the map struct % are updated to match those of the training. % (matrix) if a matrix was given as input argument, a matrix % is also returned with the same size as the input % argument. % sT (struct) train struct; information of the accomplished training % % EXAMPLES % % Simplest case: % sM = som_sompaktrain(sM,D); % sM = som_sompaktrain(sM,sD); % % The change training parameters, the optional arguments 'train', % 'neigh','mask','trainlen','radius','radius_ini', 'alpha', % 'alpha_type' and 'alpha_ini' are used. % sM = som_sompaktrain(sM,D,'bubble','trainlen',10,'radius_ini',3); % % Another way to specify training parameters is to create a train struct: % sTrain = som_train_struct(sM,'dlen',size(D,1),'algorithm','seq'); % sTrain = som_set(sTrain,'neigh','gaussian'); % sM = som_sompaktrain(sM,D,sTrain); % % You don't necessarily have to use the map struct, but you can operate % directly with codebook matrices. However, in this case you have to % specify the topology of the map in the optional arguments. The % following commads are identical (M is originally a 200 x dim sized matrix): % M = som_sompaktrain(M,D,'msize',[20 10],'lattice','hexa'); % % M = som_sompaktrain(M,D,'msize',[20 10],'hexa'); % % sT= som_set('som_topol','msize',[20 10],'lattice','hexa'); % M = som_sompaktrain(M,D,sT); % % M = reshape(M,[20 10 dim]); % M = som_sompaktrain(M,D,'hexa'); % % The som_sompaktrain also returns a train struct with information on the % accomplished training. This is the same one as is added to the end of the % trainhist field of map struct, in case a map struct is given. % [M,sTrain] = som_sompaktrain(M,D,'msize',[20 10]); % % [sM,sTrain] = som_sompaktrain(sM,D); % sM.trainhist(end)==sTrain % % SEE ALSO % % som_make Initialize and train a SOM using default parameters. % som_seqtrain Train SOM with sequential algorithm. % som_batchtrain Train SOM with batch algorithm. % som_train_struct Determine default training parameters. % Copyright (c) 1999-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 151199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Check arguments error(nargchk(2, Inf, nargin)); % check the number of input arguments % map struct_mode = isstruct(sMap); if struct_mode, sTopol = sMap.topol; else orig_size = size(sMap); if ndims(sMap) > 2, si = size(sMap); dim = si(end); msize = si(1:end-1); M = reshape(sMap,[prod(msize) dim]); else msize = [orig_size(1) 1]; dim = orig_size(2); end sMap = som_map_struct(dim,'msize',msize); sTopol = sMap.topol; end [munits dim] = size(sMap.codebook); % data givendatafile = ''; if ischar(D), data_name = D; givendatafile = D; D = []; dlen = NaN; else if isstruct(D), data_name = D.name; D = D.data; else data_name = inputname(2); end D = D(find(sum(isnan(D),2) < dim),:); % remove empty vectors from the data [dlen ddim] = size(D); % check input dimension if ddim ~= dim, error('Map and data dimensions must agree.'); end end % varargin sTrain = som_set('som_train','algorithm','seq',... 'neigh',sMap.neigh,... 'mask',ones(dim,1),... 'data_name',data_name); tlen_type = 'epochs'; random_seed = 0; snapshotname = ''; snapshotinterval = 0; i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, % argument IDs case 'msize', i=i+1; sTopol.msize = varargin{i}; case 'lattice', i=i+1; sTopol.lattice = varargin{i}; case 'neigh', i=i+1; sTrain.neigh = varargin{i}; case 'trainlen', i=i+1; sTrain.trainlen = varargin{i}; case 'tlen_type', i=i+1; tlen_type = varargin{i}; case 'radius_ini', i=i+1; sTrain.radius_ini = varargin{i}; case 'radius', i=i+1; sTrain.radius_ini = varargin{i}(1); case 'alpha_type', i=i+1; sTrain.alpha_type = varargin{i}; case 'alpha_ini', i=i+1; sTrain.alpha_ini = varargin{i}; case 'alpha', i=i+1; sTrain.alpha_ini = varargin{i}(1); case 'seed', i=i+1; random_seed = varargin{i}; case 'snapshotname',i=i+1; snapshotname = varargin{i}; case 'snapshotinterval',i=i+1; snapshotinterval = varargin{i}; case {'sTrain','train','som_train'}, i=i+1; sTrain = varargin{i}; case {'topol','sTopol','som_topol'}, i=i+1; sTopol = varargin{i}; if prod(sTopol.msize) ~= munits, error('Given map grid size does not match the codebook size.'); end % unambiguous values case {'inv','linear'}, sTrain.alpha_type = varargin{i}; case {'hexa','rect'}, sTopol.lattice = varargin{i}; case {'gaussian','bubble'}, sTrain.neigh = varargin{i}; case {'epochs','samples'}, tlen_type = varargin{i}; otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}(1).type, case 'som_topol', sTopol = varargin{i}; if prod(sTopol.msize) ~= munits, error('Given map grid size does not match the codebook size.'); end case 'som_train', sTrain = varargin{i}; otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_sompaktrain) Ignoring invalid argument #' num2str(i+2)]); end i = i+1; end % check topology if struct_mode, if ~strcmp(sTopol.lattice,sMap.topol.lattice) | ... ~strcmp(sTopol.shape,sMap.topol.shape) | ... any(sTopol.msize ~= sMap.topol.msize), warning('Changing the original map topology.'); end end sMap.topol = sTopol; % complement the training struct if ~isnan(dlen), sTrain = som_train_struct(sTrain,sMap,'dlen',dlen); else sTrain = som_train_struct(sTrain,sMap); end if isempty(sTrain.mask), sTrain.mask = ones(dim,1); end % training length if strcmp(tlen_type,'epochs'), if isnan(dlen), error('Training length given as epochs, but data length is not known.\n'); else rlen = sTrain.trainlen*dlen; end else rlen = sTrain.trainlen; sTrain.trainlen = sTrain.trainlen/dlen; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% check arguments % mask if any(sTrain.mask~=1), sTrain.mask = ones(dim,1); fprintf(1,'Ignoring given mask.\n'); end % learning rate if strcmp(sTrain.alpha_type,'power'), sTrain.alpha_type = 'inv'; fprintf(1,'Using ''inv'' learning rate type instead of ''power''\n'); end % neighborhood if any(strcmp(sTrain.neigh,{'cutgauss','ep'})), fprintf(1,'Using ''gaussian'' neighborhood function instead of %s.\n',sTrain.neigh); sTrain.neigh = 'gaussian'; end % map shape if ~strcmp(sMap.topol.shape,'sheet'), fprintf(1,'Using ''sheet'' map shape of %s.\n',sMap.topol.shape); sMap.topol.shape = 'sheet'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Action % write files if ~isempty(givendatafile), temp_din = givendatafile; else temp_din = tempname; som_write_data(D, temp_din, 'x') end temp_cin = tempname; som_write_cod(sMap, temp_cin) temp_cout = tempname; % check if the environment variable 'SOM_PAKDIR' has been defined if any(strcmp('SOM_PAKDIR', evalin('base', 'who'))) som_pak_dir = evalin('base', 'SOM_PAKDIR'); else som_pak_dir = ''; end if ~isempty(som_pak_dir) & ~strncmp(som_pak_dir(end), '/', 1) som_pak_dir(end + 1) = '/'; end aini = sTrain.alpha_ini; atype = sTrain.alpha_type; if strcmp(atype,'inv'), atype = 'inverse_t'; end rad = sTrain.radius_ini; str = [som_pak_dir 'vsom ' ... sprintf('-cin %s -din %s -cout %s', temp_cin, temp_din, temp_cout) ... sprintf(' -rlen %d -alpha %g -alpha_type %s', rlen, aini, atype) ... sprintf(' -radius %g -rand %g ',rad,random_seed)]; if ~isempty(snapshotname) & snapinterval>0, str = [str, sprintf(' -snapfile %s -snapinterval %d',snapshotname,snapshotinterval)]; end fprintf(1,'Execute: %s\n',str); if isunix, [status,w] = unix(str); if status, fprintf(1,'Execution failed.\n'); end if ~isempty(w), fprintf(1,'%s\n',w); end else [status,w] = dos(str); if status, fprintf(1,'Execution failed.\n'); end if ~isempty(w), fprintf(1,'%s\n',w); end end sMap_temp = som_read_cod(temp_cout); M = sMap_temp.codebook; if isunix unix(['/bin/rm -f ' temp_din ' ' temp_cin ' ' temp_cout]); else dos(['del ' temp_din ' ' temp_cin ' ' temp_cout]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Build / clean up the return arguments % update structures sTrain = som_set(sTrain,'time',datestr(now,0)); if struct_mode, sMap = som_set(sMap,'codebook',M,'mask',sTrain.mask,'neigh',sTrain.neigh); tl = length(sMap.trainhist); sMap.trainhist(tl+1) = sTrain; else sMap = reshape(M,orig_size); end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%