Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_mdist.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function Md = som_mdist(D,q,mask,Ne) % SOM_MDIST Mutual (or pairwise) distance matrix for the given data. % % Md = som_mdist(D,[q],[mask],[Ne]) % % Md = som_mdist(D); % Md = som_mdist(D,Inf); % Md = som_mdist(D,2,Ne); % % Input and output arguments ([]'s are optional): % D (matrix) size dlen x dim, the data set % (struct) map or data struct % [q] (scalar) distance norm, default = 2 % [mask] (vector) size dim x 1, the weighting mask % [Ne] (matrix) size dlen x dlen, sparse matrix % indicating which distances should be % calculated (ie. less than Infinite) % % See also PDIST. % Copyright (c) 2000 by Juha Vesanto % Contributed to SOM Toolbox on XXX by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 220800 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % mask if nargin<3, mask = []; end % the data if isstruct(D), switch D.type, case 'som_map', if isempty(mask), mask = D.mask; end, D = D.codebook; case 'som_data', D = D.data; otherwise, error('Bad first argument'); end end nans = sum(isnan(D),2); if any(nans>0), D(find(nans>0),:) = 0; warning('Distances of vectors with NaNs are not calculated.'); end [dlen dim] = size(D); % distance norm if nargin<2 | isempty(q) | isnan(q), q = 2; end % mask if isempty(mask), mask = ones(dim,1); end % connections if nargin<4, Ne = []; end if ~isempty(Ne), l = size(Ne,1); Ne([0:l-1]*l+[1:l]) = 1; % set diagonal elements = 1 end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m = mask; o = ones(dlen,1); l = dlen; Md = zeros(dlen); calculate_all = isempty(Ne); if ~calculate_all, Md(Ne==0) = Inf; end for i=1:l-1, j=(i+1):l; if ~calculate_all, j=find(Ne(i,j))+i; end C=D(j,:)-D(i*o(1:length(j)),:); switch q, case 1, Md(j,i)=abs(C)*m; case 2, Md(j,i)=sqrt((C.^2)*m); case Inf, Md(j,i)=max(diag(m)*abs(C),[],2); otherwise, Md(j,i)=((abs(C).^q)*m).^(1/q); end Md(i,j) = Md(j,i)'; end Md(find(nans>0),:) = NaN; Md(:,find(nans>0)) = NaN; return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%