Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_linkage.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [Z,order,Md] = som_linkage(sM,varargin) %SOM_LINKAGE Make a hierarchical linkage of the SOM map units. % % [Z,order,Dist] = som_linkage(sM, [[argID,] value, ...]) % % Z = som_linkage(sM); % Z = som_linkage(D,'complete'); % Z = som_linkage(sM,'single','ignore',find(~som_hits(sM,D))); % Z = som_linkage(sM,pdist(sM.codebook,'mahal')); % som_dendrogram(Z); % % Input and output arguments ([]'s are optional): % sM (struct) map or data struct to be clustered % (matrix) size dlen x dim, a data set: the matrix must not % contain any NaN's! % [argID, (string) See below. The values which are unambiguous can % value] (varies) be given without the preceeding argID. % % Z (matrix) size dlen-1 x 3, the linkage info % Z(i,1) and Z(i,2) hold the indeces of clusters % combined on level i (starting from bottom). The new % cluster has index dlen+i. The initial cluster % index of each unit is its linear index in the % original data matrix. Z(i,3) is the distance % between the combined clusters. See LINKAGE % function in the Statistics Toolbox. % The ignored samples are listed at the % end of the Z-matrix and have Z(*,3) == Inf % Dist (matrix) size dlen x dlen, pairwise distance matrix % % Here are the valid argument IDs and corresponding values. The values % which are unambiguous (marked with '*') can be given without the % preceeding argID. % 'linkage' *(string) the linkage criteria to use: 'single' (the % default), 'average' or 'complete' % 'topol' *(struct) topology struct % 'connect' *(string) 'neighbors' or 'any' (default), whether the % connections should be allowed only between % neighbors or between any vectors % (matrix) size dlen x dlen indicating the connections % between vectors % (scalar) the N-neighborhood upto which the connections % should be formed (implies 'neighbors') % 'ignore' (vector) the units/vectors which should be ignored % 'dist' (matrix) size dlen x dlen, pairwise distance matrix to % be used instead of euclidian distances % (vector) as the output of PDIST function % (scalar) distance norm to use (euclidian = 2) % 'mask' (vector) size dim x 1, the search mask used to % weight distance calculation. By default % sM.mask or a vector of ones is used. % % Note that together 'connect'='neighbors' and 'ignore' may form % areas on the map which will never be connected: connections % across the ignored map units simply do not exist. % % See also KMEANS_CLUSTERS, LINKAGE, PDIST, DENDROGRAM. % Copyright (c) 2000 by Juha Vesanto % Contributed to SOM Toolbox on June 16th, 2000 by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 160600 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% input arguments % the data if isstruct(sM), if isfield(sM,'data'), D = sM.data; sT = []; mask = []; else D = sM.codebook; sT = sM.topol; mask = sM.mask; end else D = sM; sT = []; mask = []; end [dlen dim] = size(D); if isempty(mask), mask = ones(dim,1); end if any(isnan(D(:))), error('Data matrix must not have any NaNs.'); end % varargin Md = 2; linkage = 'single'; ignore_units = []; constrained = 0; i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, % argument IDs case {'topol','som_topol','sTopol'}, i=i+1; sT = varargin{i}; case 'connect', i=i+1; if ischar(varargin{i}), constrained = ~strcmp(varargin{i},'any'); else constrained = varargin{i}; end case 'ignore', i=i+1; ignore_units = varargin{i}; case 'dist', i=i+1; Md = varargin{i}; case 'linkage', i=i+1; linkage = varargin{i}; case 'mask', i=i+1; mask = varargin{i}; case 'tracking',i=i+1; tracking = varargin{i}; % unambiguous values case 'neighbors', constrained = 1; case 'any', constrained = 0; case {'single','average','complete'}, linkage = varargin{i}; otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}(1).type, case 'som_topol', sTopol = varargin{i}; otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_linkage) Ignoring invalid argument #' num2str(i+1)]); end i = i+1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% distance matrix % given distance matrix % jh corrected this place totally 27.3. 03 if (prod(size(Md))==1), % no explicit distance matrix, set flag q=2; % 17.2.03 kr added some brackets else if (prod(size(Md))<dlen^2), % check pdist form Md = squareform(Md); % transform to ordinary square diastance matrix end % jh: 27.3. 03 "calculate pairwise dist. matrix" see approx. 20 lines below % sets self-distance to Inf! This must be set here also, % otherwise clustering fails for user defined dist. matrix! Md(eye(dlen)==1)=Inf; end % neighborhood constraint if length(constrained)==1 & constrained>0, Ne1 = som_unit_neighs(sT); Conn = som_neighborhood(Ne1,constrained); Conn(~isfinite(Conn(:))) = 0; else Conn = constrained; end if ~isempty(Conn), for i=1:dlen, C(i,i) = 1; end, end % pairwise distance matrix across connected units n = size(D,1); if prod(size(Md))>1, % remove distances between non-neighbors if constrained, for i = 1:n, Md(i,find(Conn(i,:)==0)) = Inf; end, end else % calculate pairwise distance matrix q = Md; Md = zeros(n,n)+Inf; if ~constrained & q==2, % fast for the default case for i = 1:n-1, x = D(i,:); inds = [(i+1):n]; Diff = D(inds,:) - x(ones(n-i,1),:); Md(inds,i) = sqrt((Diff.^2)*mask); Md(i,inds) = Md(inds,i)'; end else for i = 1:n-1, inds = find(Conn(i,:)==1); inds = inds(find(inds>i)); Diff = abs(D(inds,:) - D(i*ones(length(inds),1),:)); switch q, case 1, dist = Diff*mask; case 2, dist = sqrt((Diff.^2)*mask); case Inf, dist = max(Diff,[],2); otherwise, dist = ((Diff.^q)*mask).^(1/q); end Md(inds,i) = dist; Md(i,inds) = dist'; end end end % set distances to ignored units to Inf if ~isempty(ignore_units), Md(ignore_units,:) = Inf; Md(:,ignore_units) = Inf; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% construct dendrogram Z = zeros(n-1,3)+NaN; % merged clusters and distance for each step clusters = 1:dlen; % each vector is at first in its own cluster Cd = Md; % distances between clusters h = waitbar(0,'Constructing hierarchical clustering'); for i=1:n-1, % tracking waitbar(i/(n-1),h); %% combine two closest clusters % find the clusters which are closest to each other (c1 and c2) [d,ind] = min(min(Cd)); if ~isfinite(d), break; end % no more connected clusters [d,c1] = min(Cd(:,ind)); % cluster1 c2 = clusters(ind); % cluster2 % combine the two clusters c1_inds = find(clusters==c1); % vectors belonging to c1 c2_inds = find(clusters==c2); % vectors belonging to c2 c_inds = [c1_inds, c2_inds]; % members of the new cluster % new cluster index = bigger cluster if length(c2_inds)>length(c1_inds), c=c2; k=c1; else c=c1; k=c2; end clusters(c_inds) = c; % update cluster info Z(i,:) = [c, k, d]; % save info into Z %% update cluster distances % remove the subclusters from the Cd table Cd(c_inds,c_inds) = Inf; % distance of the cluster to its members = Inf k_inds = c_inds(c_inds ~= c); % vectors of the smaller cluster Cd(k_inds,:) = Inf; % distance of the subclusters to Cd(:,k_inds) = Inf; % other clusters = Inf % update the distance of this cluster to the other clusters cl = unique(clusters(clusters ~= c)); % indeces of all other clusters if ~isempty(cl), % added since v6.5 works differently than 6.1 for l=cl, o_inds = find(clusters==l); % indeces belonging to cluster k vd = Md(c_inds,o_inds); % distances between vectors in c and k vd = vd(isfinite(vd(:))); % remove infinite distances (no connection) len = length(vd); if ~len, % if the two clusters are not connected, their distance in Inf sd = Inf; else % otherwise, calculate the distance between them switch linkage, case 'single', sd = min(vd); case 'average', sd = sum(vd)/len; case 'complete', sd = max(vd); otherwise, error(['Unknown set distance: ' linkage]); end end Cd(c,l) = sd; Cd(l,c) = sd; end end end close(h); last = Z(i,1); if isnan(last), last = Z(i-1,1); rest = setdiff(unique(clusters),last); Z(i:n-1,1) = rest'; Z(i:n-1,2) = last; Z(i:n-1,3) = Inf; i = i - 1; else rest = []; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% return values % calculate the order of samples order = last; % go through the combination matrix from top to down for k=i:-1:1, c = Z(k,1); k = Z(k,2); % what (k) change to what (c) j = find(order==c); % the occurance of c in order if j == length(order), order = [order k]; % put k behind c else order = [order(1:j) k order(j+1:end)]; end end order = [rest, order]; % to maintain compatibility with Statistics Toolbox, the values in % Z must be yet transformed so that they are similar to the output % of LINKAGE function Zs = Z; current_cluster = 1:dlen; for i=1:size(Z,1), Zs(i,1) = current_cluster(Z(i,1)); Zs(i,2) = current_cluster(Z(i,2)); current_cluster(Z(i,[1 2])) = dlen+i; end Z = Zs; return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%