Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_info.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function som_info(sS,level) %SOM_INFO Displays information on the given SOM Toolbox struct. % % som_info(sS,[level]) % % som_info(sMap); % som_info(sData,3); % som_info({sMap,sData}); % som_info(sMap.comp_norm{2}); % % Input and output arguments ([]'s are optional): % sS (struct) SOM Toolbox struct % (cell array of structs) several structs in a cell array % [level] (scalar) detail level (1-4), default = 1 % % For more help, try 'type som_info' or check out online documentation. % See also SOM_SET. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_info % % PURPOSE % % Display information of the given SOM Toolbox struct(s). % % SYNTAX % % som_info(sM) % som_info({sM,sD}) % som_info(...,level) % % DESCRIPTION % % Display the contents of the given SOM Toolbox struct(s). Information % of several structs can be shown if the structs are given in a cell % array. The level of detail can be varied with the second argument. % The number of different levels varies between structs. For map and % data structs, not only the fields, but also some statistics of the % vectors ('.data' and '.codebook' fields) is displayed. % % map struct % level 1: name, dimension, topology, dimension, neigborhood function, % mask and training status % level 2: ..., training history % level 3: ..., vector component names, statistics and normalization status % level 4: ..., vector component normalizations % % data struct: % level 1: name, dimension, data set completeness statistics % level 2: ..., vector component names, statistics and normalization status % level 3: ..., vector component normalizations % level 4: ..., label statistics % % topology struct: % level 1: all fields % % train struct: % level 1: all fields % % normalization struct: % level 1: method, status % level 2: ..., parameters % % REQUIRED INPUT ARGUMENTS % % sS (struct) SOM Toolbox struct % (cell array of structs) several structs in a cell array % % OPTIONAL INPUT ARGUMENTS % % level (scalar) detail level (1-4), default = 1 % % EXAMPLES % % som_info(sM) % som_info(sM,4) % som_info(sM.trainhist) % som_info(sM.comp_norm{3}) % % SEE ALSO % % som_set Set fields and create SOM Toolbox structs. % Copyright (c) 1999-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 1.0beta ecco 110997 % Version 2.0beta juuso 101199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% check arguments error(nargchk(1, 2, nargin)) % check no. of input args is correct if ~isstruct(sS), if ~iscell(sS) | ~isstruct(sS{1}), error('Invalid first input argument.') end csS = sS; else l = length(sS); csS = cell(l,1); for i=1:l, csS{i} = sS(i); end end if nargin<2 | isempty(level) | isnan(level), level = 1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% print struct information for c=1:length(csS), sS = csS{c}; fprintf(1,'\n'); switch sS.type, case 'som_map', mdim = length(sS.topol.msize); [munits dim] = size(sS.codebook); t = length(sS.trainhist); if t==0, st='uninitialized'; elseif t==1, st = 'initialized'; else st = sprintf('initialized, trained %d times',t-1); end % level 1 fprintf(1,'Struct type : %s\n', sS.type); fprintf(1,'Map name : %s\n', sS.name); fprintf(1,'Input dimension : %d\n', dim); fprintf(1,'Map grid size : '); for i = 1:mdim - 1, fprintf(1,'%d x ',sS.topol.msize(i)); end fprintf(1,'%d\n', sS.topol.msize(mdim)); fprintf(1,'Lattice type (rect/hexa) : %s\n', sS.topol.lattice); fprintf(1,'Shape (sheet/cyl/toroid) : %s\n', sS.topol.shape); fprintf(1,'Neighborhood type : %s\n', sS.neigh); fprintf(1,'Mask : '); if dim, for i = 1:dim-1, fprintf(1,'%d ',sS.mask(i)); end; fprintf(1,'%d\n',sS.mask(dim)); else fprintf(1,'\n'); end fprintf(1,'Training status : %s\n', st); % level 1, status = cell(dim,1); for i=1:dim, n = length(sS.comp_norm{i}); if n, uninit = strcmp('uninit',{sS.comp_norm{i}.status}); done = strcmp('done',{sS.comp_norm{i}.status}); undone = strcmp('undone',{sS.comp_norm{i}.status}); if sum(uninit)==n, status{i} = 'none'; elseif sum(done)==n, status{i} = 'done'; elseif sum(undone)==n, status{i} = 'undone'; else status{i} = 'partial'; end else status{i} = 'no normalization'; end end if level>1, fprintf(1,'\nVector components\n'); M = sS.codebook; fprintf(1,' # name mask min mean max std normalization\n'); fprintf(1,' --- ------------ ---- ------ ------ ------ ------ -------------\n'); for i = 1:dim, fprintf(1,' %-3d %-12s %-4.2f %6.2g %6.2g %6.2g %6.2g %s\n', ... i,sS.comp_names{i}, sS.mask(i), ... min(M(:,i)),mean(M(:,i)),max(M(:,i)),std(M(:,i)),status{i}); end end % level 3 if level>2, fprintf(1,'\nVector component normalizations\n'); fprintf(1,' # name method (i=uninit,u=undone,d=done)\n'); fprintf(1,' --- ------------ ---------------------------------------\n'); for i=1:dim, fprintf(1,' %-3d %-12s ',i,sS.comp_names{i}); n = length(sS.comp_norm{i}); for j=1:n, m = sS.comp_norm{i}(j).method; s = sS.comp_norm{i}(j).status; if strcmp(s,'uninit'), c='i'; elseif strcmp(s,'undone'), c='u'; else c='d'; end fprintf(1,'%s[%s] ',m,c); end fprintf(1,'\n'); end end % level 4 if level>3, fprintf(1,'\nTraining history\n'); fprintf(1,'Algorithm Data Trainlen Neigh.f. Radius Alpha (type) Date\n'); fprintf(1,'--------- ------------- -------- -------- ---------- -------------- --------------------\n'); for i=1:t, sT = sS.trainhist(i); fprintf(1,'%8s %13s %8d %8s %4.2f->%4.2f %5.3f (%6s) %s\n',... sT.algorithm,sT.data_name,sT.trainlen,... sT.neigh,sT.radius_ini,sT.radius_fin,sT.alpha_ini,sT.alpha_type,sT.time); %for j = 1:length(sT.mask)-1, fprintf(1,'%d ',sT.mask(j)); end; %if ~isempty(sT.mask), fprintf(1,'%d\n',sT.mask(end)); else fprintf(1,'\n'); end end end case 'som_data', [dlen dim] = size(sS.data); if dlen*dim if dim>1, ind = find(~isnan(sum(sS.data,2))); else ind = find(~isnan(sS.data)); end else ind = []; end complete = size(sS.data(ind,:),1); partial = dlen - complete; values = prod(size(sS.data)); missing = sum(sum(isnan(sS.data))); % level 1 fprintf(1,'Struct type : %s\n', sS.type); fprintf(1,'Data name : %s\n', sS.name); fprintf(1,'Vector dimension : %d\n', dim); fprintf(1,'Number of data vectors : %d\n', dlen); fprintf(1,'Complete data vectors : %d\n', complete); fprintf(1,'Partial data vectors : %d\n', partial); if values, r = floor(100 * (values - missing) / values); else r = 0; end fprintf(1,'Complete values : %d of %d (%d%%)\n', ... values-missing, values, r); % level 2, status = cell(dim,1); for i=1:dim, n = length(sS.comp_norm{i}); if n, uninit = strcmp('uninit',{sS.comp_norm{i}.status}); done = strcmp('done',{sS.comp_norm{i}.status}); undone = strcmp('undone',{sS.comp_norm{i}.status}); if sum(uninit)==n, status{i} = 'none'; elseif sum(done)==n, status{i} = 'done'; elseif sum(undone)==n, status{i} = 'undone'; else status{i} = 'partial'; end else status{i} = 'no normalization'; end end if level>1, fprintf(1,'\nVector components\n'); D = sS.data; fprintf(1,' # name min mean max std missing normalization\n'); fprintf(1,' --- ------------ ------ ------ ------ ------ ----------- -------------\n'); for i = 1:dim, known = find(~isnan(D(:,i))); miss = dlen-length(known); switch length(known), case 0, mi = NaN; me = NaN; ma = NaN; st = NaN; case 1, mi = D(known,i); me = mi; ma = mi; st = 0; otherwise, mi = min(D(known,i)); ma = max(D(known,i)); me = mean(D(known,i)); st = std(D(known,i)); end fprintf(1,' %-3d %-12s %6.2g %6.2g %6.2g %6.2g %5d (%2d%%) %s\n', ... i,sS.comp_names{i},mi,me,ma,st,miss,floor(100*miss/dlen),status{i}); end end % level 3 if level>2, fprintf(1,'\nVector component normalizations\n'); fprintf(1,' # name method (i=uninit,u=undone,d=done)\n'); fprintf(1,' --- ------------ ---------------------------------------\n'); for i=1:dim, fprintf(1,' %-3d %-12s ',i,sS.comp_names{i}); n = length(sS.comp_norm{i}); for j=1:n, m = sS.comp_norm{i}(j).method; s = sS.comp_norm{i}(j).status; if strcmp(s,'uninit'), c='i'; elseif strcmp(s,'undone'), c='u'; else c='d'; end fprintf(1,'%s[%s] ',m,c); end fprintf(1,'\n'); end end % level 4 if level>3, m = size(sS.labels,2); fprintf(1,'\nLabels\n'); if isempty(sS.label_names), labs = {''}; freq = 0; for i=1:dlen*m, l = sS.labels{i}; if isempty(l), freq(1) = freq(1)+1; else k = find(strcmp(labs,l)); if isempty(k), labs{end+1} = l; freq(end+1) = 1; else freq(k)=freq(k)+1; end end end emp = freq(1); uni = length(freq)-1; if uni>0, tot = sum(freq(2:end)); else tot = 0; end fprintf(1,' Total: %d\n Empty: %d\n Unique: %d\n',tot,emp,uni); else for j=1:m, labs = {''}; freq = 0; for i=1:dlen, l = sS.labels{i,j}; if isempty(l), freq(1) = freq(1)+1; else k = find(strcmp(labs,l)); if isempty(k), labs{end+1} = l; freq(end+1) = 1; else freq(k)=freq(k)+1; end end end emp = freq(1); uni = length(freq)-1; if uni>0, tot = sum(freq(2:end)); else tot = 0; end fprintf(1,' [%s] Total / empty / unique: %d / %d / %d\n', ... sS.label_names{j},tot,emp,uni); end end end case 'som_topol', mdim = length(sS.msize); % level 1 fprintf(1,'Struct type : %s\n',sS.type); fprintf(1,'Map grid size : '); for i = 1:mdim - 1, fprintf(1,'%d x ',sS.msize(i)); end fprintf(1,'%d\n', sS.msize(mdim)); fprintf(1,'Lattice type (rect/hexa) : %s\n', sS.lattice); fprintf(1,'Shape (sheet/cyl/toroid) : %s\n', sS.shape); case 'som_train', % level 1 fprintf(1,'Struct type : %s\n',sS.type); fprintf(1,'Training algorithm : %s\n',sS.algorithm); fprintf(1,'Training data : %s\n',sS.data_name); fprintf(1,'Neighborhood function : %s\n',sS.neigh); fprintf(1,'Mask : '); dim = length(sS.mask); if dim, for i = 1:dim-1, fprintf(1,'%d ',sS.mask(i)); end; fprintf(1,'%d\n',sS.mask(end)); else fprintf(1,'\n'); end fprintf(1,'Initial radius : %-6.1f\n',sS.radius_ini); fprintf(1,'Final radius : %-6.1f\n',sS.radius_fin); fprintf(1,'Initial learning rate (alpha) : %-6.1f\n',sS.alpha_ini); fprintf(1,'Alpha function type (linear/inv) : %s\n',sS.alpha_type); fprintf(1,'Training length : %d\n',sS.trainlen); fprintf(1,'When training was done : %s\n',sS.time); case 'som_norm', % level 1 fprintf(1,'Struct type : %s\n',sS.type); fprintf(1,'Normalization method : %s\n',sS.method); fprintf(1,'Status : %s\n',sS.status); % level 2 if level>1, fprintf(1,'Parameters:\n'); sS.params end case 'som_grid', % level 1 fprintf(1,'Struct type : %s\n',sS.type); if ischar(sS.neigh), fprintf(1,'Connections : [%d %d], %s, %s\n',... sS.msize(1),sS.msize(2),sS.neigh,sS.shape); else fprintf(1,'Connections : [%d %d] %d lines\n',... sS.msize(1),sS.msize(2),sum(sS.neigh)); end fprintf(1,'Line : %s\n',sS.line); if length(sS.marker)==1, fprintf(1,'Marker : %s\n',sS.marker); else fprintf(1,'Marker : varies\n'); end fprintf(1,'Surf : '); if isempty(sS.surf), fprintf(1,'off\n'); else fprintf(1,'on\n'); end fprintf(1,'Labels : '); if isempty(sS.label), fprintf(1,'off\n'); else fprintf(1,'on (%d)\n',sS.labelsize); end end fprintf(1,'\n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%