Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_colorcode.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function colors=som_colorcode(m, colorcode, scaling) %SOM_COLORCODE Calculates a heuristic color coding for the SOM grid % % colors = som_colorcode(m, colorcode, scaling) % % Input and output arguments ([]'s are optional): % m (struct) map or topol struct % (cell array) of form {str,[m1 m2]} where % str = 'hexa' or 'rect' and [m1 m2] = msize % (matrix) size N x 2, unit coordinates % [colorcode] (string) 'rgb1' (default),'rgb2','rgb3','rgb4','hsv' % [scaling] (scalar) 1=on (default), 0=off. Has effect only % if m is a Nx2 matrix of coordinates: % controls whether these are scaled to % range [0,1] or not. % % colors (matrix) size N x 3, RGB colors for each unit (or point) % % The function gives a color coding by location for the map grid % (or arbitrary set of points). Map grid coordinates are always linearly % normalized to a unit square (x and y coordinates between [0,1]), except % if m is a Nx2 matrix and scaling=0. In that case too, the coordinates % must be in range [0,1]. % % Following heuristic color codings are available: % % 'rgb1' slice of RGB-cube so that green - yellow % the corners have colors: | | % blue - magenta % % 'rgb2' slice of RGB-cube so that red - yellow % the corners have colors: | | % blue - cyan % % 'rgb3' slice of RGB-cube so that mixed_green - orange % the corners have colors: | | % light_blue - pink % % 'rgb4' has 'rgb1' on the diagonal + additional colors in corners % (more resolution but visually strongly discontinuous) % % 'hsv' angle and radius from map centre are coded by hue and % intensity (more resoluton but visually discontinuous) % % See also SOM_CPLANE, SOM_SHOW, SOM_CLUSTERCOLOR, SOM_KMEANSCOLOR, % SOM_BMUCOLOR. % Contributed to SOM Toolbox 2.0, February 11th, 2000 by Johan Himberg % Copyright (c) by Johan Himberg % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0 Johan 140799 %%% Check arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% error(nargchk(1, 3, nargin)); % check no. of input args is correct %% Check m: map, topol, cell or data? if vis_valuetype(m,{'nx2'}), p=m; % explicit coordinates else % map, topol, cell [tmp,ok,tmp]=som_set(m); if isstruct(m) & all(ok) switch m.type case 'som_topol' % topol msize=m.msize; lattice=m.lattice; case 'som_map' msize=m.topol.msize; % map lattice=m.topol.lattice; otherwise error('Invalid map or topol struct.'); end % cell elseif iscell(m) & vis_valuetype(size(m),{[1 2]}), if vis_valuetype(m{2},{[1 2]}) & vis_valuetype(m{1},{'string'}), lattice=m{1}; msize=m{2}; else error('Invalid map size information.'); end end %% Check map parameters switch lattice % lattice case 'hexa' ; case 'rect' ; otherwise error('Unknown lattice type'); end if length(msize)>2 % dimension error('Only 2D maps allowed!'); end % Calculate coordinates p=som_unit_coords(msize,lattice,'sheet'); % Set scaling to 1 as it is done always in this case scaling=1; end % Check colorcode if nargin < 2 | isempty(colorcode), colorcode='rgb1'; end if ~ischar(colorcode) error('String value for colorcode mode expected.'); else switch colorcode case { 'rgb1', 'rgb2', 'rgb3' , 'rgb4' ,'hsv'} otherwise error([ 'Colorcode mode ' colorcode ' not implemented.']); end end % Check scaling if nargin < 3 | isempty(scaling) scaling=1; end if ~vis_valuetype(scaling,{'1x1'}) error('Scaling should be 0 (off) or 1 (on).'); end %% Action %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % scale coordintes between [0,1] if scaling n=size(p,1); mn=min(p); e=max(p)-mn; p=(p-repmat(mn,n,1))./repmat(e,n,1); elseif sum(p(:,1)>1+p(:,1)<0+p(:,2)>1+p(:,2)<0), error('Coordinates out of range [0,1].'); end switch colorcode case 'rgb1' h(:,1)=p(:,1); h(:,2)=1-p(:,2); h(:,3)=p(:,2); case 'rgb2' h(:,1)=p(:,1); h(:,2)=1-p(:,2); h(:,3)=1-p(:,1); case 'rgb3' h(:,1)=p(:,1); h(:,2)=.5; h(:,3)=p(:,2); case 'rgb4' p=rgb4(p); h(:,1)=p(:,1); h(:,2)=1-p(:,2); h(:,3)=p(:,3); case 'hsv' munits = n; Hsv = zeros(munits,3); for i=1:n, dx = .5-p(i,1); dy = .5-p(i,2); r = sqrt(dx^2+dy^2); if r==0, h=1; elseif dx==0, h=.5; %h=ay; elseif dy==0, h=.5; %h=ax; else h = min(abs(.5/(dx/r)),abs(.5/(dy/r))); end if r==0, angle = 0; else angle = acos(dx/r); if dy<0, angle = 2*pi-angle; end end Hsv(i,1) = 1-sin(angle/4); Hsv(i,2) = 1; Hsv(i,3) = r/h; h = hsv2rgb(Hsv); end end %% Build output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% colors=h; %% Subfunctions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% juha %%%% function p=rgb4(coord) for i=1:size(coord,1); p(i,:)=get_coords(coord(i,:))'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function coords=get_coords(coords) %GET_COORDS % % get_coords(coords) % % ARGUMENTS % % coords (1x2 or 2x1 vector) coords(1) is an x-coordinate and coords(2) % y-coordinate. % % % RETURNS % % coords (3x1 vector) x,y and z-coordinates. % if ~(all(size(coords) == [1 2]) | all(size(coords) == [2 1])) error('Argument ''coords'' must be an 2x1 or 1x2 vector.'); end if all(size(coords) == [1 2]) coords=coords'; end if any(coords > 1) any(coords < 0) error('Coordinates must lay inside the interval [0,1].'); end if coords(1) <= 1/(sqrt(2)+1), if coords(2) <= line3(coords(1)) coords=coords_in_base(4,coords); elseif coords(2) <= line2(coords(1)) coords=coords_in_base(1,coords); else coords=coords_in_base(2,coords); end elseif coords(1) <= sqrt(2)/(sqrt(2)+1) if coords(2) <= line1(coords(1)) coords=coords_in_base(3,coords); elseif coords(2) <= line2(coords(1)) coords=coords_in_base(1,coords); else coords=coords_in_base(2,coords); end else if coords(2) <= line1(coords(1)), coords=coords_in_base(3,coords); elseif coords(2) <= line4(coords(1)) coords=coords_in_base(1,coords); else coords=coords_in_base(5,coords); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function coords=coords_in_base(base_no,coords) A=[0;1/(sqrt(2)+1)]; E=[1;1]; F=[0;0]; G=[1;0]; H=[0;1]; const=1+1/sqrt(2); switch base_no case 1 x=(coords-A)*const; coords=[(1/sqrt(2))*(x(1)-x(2));0.5*(x(1)+x(2));0.5*(x(1)+x(2))]; case 2 x=(coords-H)*const; coords=[0;x(1);1+x(2)]; case 3 x=(coords-G)*const; coords=[1;1+x(1);x(2)]; case 4 x=(coords-F)*const; coords=[0.5+(1/sqrt(2))*(x(1)-x(2));... 0.5-(1/sqrt(2))*(x(1)+x(2));... 0]; case 5 x=(coords-E)*const; coords=[0.5+(1/sqrt(2))*(x(1)-x(2));... 0.5-(1/sqrt(2))*(x(1)+x(2));... 1]; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y=line1(x) y = x-1/(sqrt(2)+1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y=line2(x) y = x+1/(sqrt(2)+1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y=line3(x) y = -x+1/(sqrt(2)+1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y= line4(x) y = -x+(2*sqrt(2)+1)/(sqrt(2)+1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%