Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_clstruct.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function sC = som_clstruct(Z,varargin) %SOM_CLSTRUCT Create a clustering struct or set its field values. % % sC = som_clstruct(Z, [argID, value, ...]) % % Z = linkage(pdist(sM.codebook)); % sC = som_clstruct(Z); % sC = som_clstruct(sC,'coord',som_vis_coords(lattice,msize)); % sC = som_clstruct(sC,'color',som_colorcode(sM)); % sC = som_clstruct(sC,'base',sC.base(som_bmus(sM,sD))); % % Input and output arguments ([]'s are optional): % Z (matrix) size clen-1 x 3, where clen is the number of % base clusters. This is a clustering matrix % similar to that produced by LINKAGE in % Statistical Toolbox. See SOM_LINKAGE. % (struct) clustering struct (as produced by this function) % [argID, (string) See below. Each pair is the fieldname and % value] (varies) the value to be given to that field. % % sC (struct) clustering struct % % The clustering struct is based on the assumption that there % is a base partitioning of the SOM (or data) which is saved in % the .base field of the struct. Then a hierarchical clustering % is applied to this base partitioning. The results are saved to % .tree field of the struct. Each cluster (base and combined) % has also three properties: height, coordinate and color, which % are used in the visualizations. The fields of the struct are: % .type (string) 'som_clustering' % .name (string) Identifier for the clustering. % .tree (matrix) Size clen-1 x 3, as argument Z above. % .base (vector) Size dlen x 1, the basic groups of data % forming the base clusters, e.g. as a result % of partitive clustering. Allowed values are % 1:clen indicating the base cluster % to which the data belongs to. % NaN indicating that the data has % been ignored in the clustering % By default [1:clen]. % .height (vector) Size 2*clen-1 x 1, (clustering) height for each % cluster. By default 0 for each base cluster and % .tree(:,3) for the others. % .coord (matrix) Size 2*clen-1 x *, coordinate for each cluster, % By default the coordinates are set so that % the base clusters are ordered on a line, and the % position of each combined cluster is average of % the base clusters that constitute it. % .color (matrix) Size 2*clen-1 x 3, color for each cluster. % By default the colors are set so that the % base clusters are ordered on a line, like above, % and then colors are assigned from the 'hsv' % colormap to the base clusters. The color % of each combined cluster is average as above. % % Height, coord and color can also be specified in alternate forms: % 'height' (vector) size 2*clen-1 x 1, if given explicitly % size clen-1 x 1, specified heights of the % combined clusters (the base cluster heights % are all = 0) % size 0 x 0, default value is used % 'coord' (matrix) size 2*clen-1 x *, if given explicitly % size clen x *, to give coordinates for base % clusters; the coordinate of combined clusters % are averaged from these % size dlen x *, to give coordinates of the % original data: the cluster coordinates are % averaged from these based on base clusters % size 0 x 0, default value is used % 'color' (matrix) as 'coord' % % See also SOM_CLPLOT, SOM_CLVALIDITY, SOM_CLGET, SOM_CLLINKAGE. % Copyright (c) 2000 by the SOM toolbox programming team. % Contributed to SOM Toolbox on XXX by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 180800 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isstruct(Z), base = Z.base; color = Z.color; coord = Z.coord; height = Z.height; name = Z.name; Z = Z.tree; else base = []; color = []; coord = []; height = []; name = ''; end clen = size(Z,1)+1; i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, case 'tree', i=i+1; Z = varargin{i}; clen = size(Z,1)+1; case 'base', i=i+1; base = varargin{i}; case 'color', i=i+1; color = varargin{i}; case 'coord', i=i+1; coord = varargin{i}; case 'height', i=i+1; height = varargin{i}; case 'name', i=i+1; name = varargin{i}; otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_clstruct) Ignoring invalid argument #' num2str(i+1)]); end i = i+1; end if isempty(base), dlen = clen; base = 1:dlen; else dlen = length(base); if any(base)>clen | any(base)<1, error('Incorrect base partition vector.'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% analysis of hierarchy % order of base clusters order = 2*clen-1; nonleaves = 1; while any(nonleaves), j = nonleaves(1); ch = Z(order(j)-clen,1:2); if j==1, oleft = []; else oleft = order(1:(j-1)); end if j==length(order), oright = []; else oright = order((j+1):length(order)); end order = [oleft, ch, oright]; nonleaves = find(order>clen); end % base cluster indeces for each non-base cluster basecl = cell(clen-1,1); for i=1:clen-1, c1 = Z(i,1); if c1>clen, c1 = basecl{c1-clen}; end c2 = Z(i,2); if c2>clen, c2 = basecl{c2-clen}; end basecl{i} = [c1 c2]; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% set coordinates, color and height and make the struct % coordinates if size(coord,1)==2*clen-1, % this is ok already else if size(coord,1)==0, % the default [dummy,coord] = sort(order); coord = coord'; elseif size(coord,1)==dlen & dlen>clen, % coordinates given for original data codata = coord; coord = zeros(clen,size(coord,2)); for i=1:clen, coord(i,:) = mean(codata(find(base==i),:),1); end end if size(coord,1)==clen, % average from base clusters coord = [coord; zeros(clen-1,size(coord,2))]; for i=1:clen-1, coord(i+clen,:) = mean(coord(basecl{i},:),1); end else error('Incorrect coordinate matrix.'); end end % color if size(color,1)==2*clen-1, % this is ok already else if size(color,1)==0, % the default color(order,:) = hsv(length(order)); elseif size(color,1)==dlen & dlen>clen, % colors given for original data codata = color; color = zeros(clen,3); for i=1:clen, color(i,:) = mean(codata(find(base==i),:),1); end end if size(color,1)==clen, % average from base clusters color = [color; zeros(clen-1,3)]; for i=1:clen-1, color(i+clen,:) = mean(color(basecl{i},:),1); end else error('Incorrect color matrix.'); end end % height if isempty(height), height = [zeros(clen,1); Z(:,3)]; elseif length(height)==clen-1, if size(height,2)==clen-1, height = height'; end height = [zeros(clen,1); height]; elseif length(height)~=2*clen-1, error('Incorrect height vector.'); end % make the struct sC = struct('type','som_clustering',... 'name',name,'base',base,'tree',Z,... 'color',color,'coord',coord,'height',height); return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%