Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_cllinkage.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function sC = som_cllinkage(sM,varargin) %SOM_CLLINKAGE Make a hierarchical linkage of the SOM map units. % % sC = som_cllinkage(sM, [[argID,] value, ...]) % % sC = som_cllinkage(sM); % sC = som_cllinkage(D,'complete'); % sC = som_cllinkage(sM,'single','ignore',find(~som_hits(sM,D))); % sC = som_cllinkage(sM,pdist(sM.codebook,'mahal')); % som_clplot(sC); % % Input and output arguments ([]'s are optional): % sM (struct) map or data struct to be clustered % (matrix) size dlen x dim, a data set: the matrix must not % contain any NaN's! % [argID, (string) See below. The values which are unambiguous can % value] (varies) be given without the preceeding argID. % % sC (struct) a clustering struct with e.g. the following fields % (for more information see SOMCL_STRUCT) % .base (vector) if base partitioning is given, this is a newly % coded version of it so that the cluster indices % go from 1 to the number of clusters. % .tree (matrix) size clen-1 x 3, the linkage info % Z(i,1) and Z(i,2) hold the indeces of clusters % combined on level i (starting from bottom). The new % cluster has index dlen+i. The initial cluster % index of each unit is its linear index in the % original data matrix. Z(i,3) is the distance % between the combined clusters. See LINKAGE % function in the Statistics Toolbox. % % Here are the valid argument IDs and corresponding values. The values % which are unambiguous (marked with '*') can be given without the % preceeding argID. % 'topol' *(struct) topology struct % 'connect' *(string) 'neighbors' or 'any' (default), whether the % connections should be allowed only between % neighbors or between any vectors % (matrix) size dlen x dlen indicating the connections % between vectors % 'linkage' *(string) the linkage criteria to use: 'single' (the % default), 'average', 'complete', 'centroid', or 'ward' % 'dist' (matrix) size dlen x dlen, pairwise distance matrix to % be used instead of euclidian distances % (vector) as the output of PDIST function % (scalar) distance norm to use (default is euclidian = 2) % 'mask' (vector) size dim x 1, the search mask used to % weight distance calculation. By default % sM.mask or a vector of ones is used. % 'base' (vector) giving the base partitioning of the data: % base(i) = j denotes that vector i belongs to % base cluster j, and base(i) = NaN that vector % i does not belong to any cluster, but should be % ignored. At the beginning of the clustering, the % vector of each cluster are averaged, and these % averaged vectors are then clustered using % hierarchical clustering. % 'ignore' (vector) units to be ignored (in addition to those listed % in base argument) % 'tracking' (scalar) 1 or 0: whether to show tracking bar or not (default = 0) % % Note that if 'connect'='neighbors' and some vector are ignored (as denoted % by NaNs in the base vector), there may be areas on the map which will % never be connected: connections across the ignored map units simply do not % exist. In such a case, the neighborhood is gradually increased until % the areas can be connected. % % See also KMEANS_CLUSTERS, LINKAGE, PDIST, DENDROGRAM. % Copyright (c) 2000 by Juha Vesanto % Contributed to SOM Toolbox on XXX by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 160600 250800 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% input arguments % the data if isstruct(sM), switch sM.type, case 'som_map', M = sM.codebook; sT = sM.topol; mask = sM.mask; data_name = sM.name; sTr = sM.trainhist(end); case 'som_data', M = sM.data; sT = []; mask = []; data_name = sM.name; sTr = []; case 'som_topol', M = []; sT = sM; mask = []; data_name = inputname(1); sTr = som_set('som_train','neigh','gaussian','radius_fin',1); otherwise, error('Bad first argument'); end else M = sM; sT = []; mask = []; data_name = inputname(1); sTr = []; end [dlen dim] = size(M); if isempty(mask), mask = ones(dim,1); end if any(isnan(M(:))), error('Data matrix must not have any NaNs.'); end % varargin q = 2; Md = []; linkage = 'single'; ignore = []; Ne = 'any'; base = []; tracking = 0; i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, % argument IDs case {'topol','som_topol','sTopol'}, i=i+1; sT = varargin{i}; case 'connect', i=i+1; Ne = varargin{i}; case 'ignore', i=i+1; ignore = varargin{i}; case 'dist', i=i+1; Md = varargin{i}; case 'linkage', i=i+1; linkage = varargin{i}; case 'mask', i=i+1; mask = varargin{i}; case 'tracking',i=i+1; tracking = varargin{i}; case 'base', i=i+1; base = varargin{i}; % unambiguous values case 'neighbors', Ne = varargin{i}; case 'any', Ne = varargin{i}; case {'single','average','complete','neighf','centroid','ward'}, linkage = varargin{i}; otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}(1).type, case 'som_topol', sT = varargin{i}; otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_cllinkage) Ignoring invalid argument #' num2str(i+1)]); end i = i+1; end % check distance metric if prod(size(Md))==1, q = Md; Md = []; end if ~isempty(Md) & prod(size(Md))<dlen^2, Md = squareform(Md); end if prod(size(Md))>0 & any(strcmp(linkage,{'ward','centroid'})), warning(['The linkage method ' linkage ' cannot be performed with precalculated distance matrix.']); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% distance matrix and connections between units % base partition if isempty(base), base = 1:dlen; end if ~isempty(ignore), base(ignore) = NaN; end cid = unique(base(isfinite(base))); nc = length(cid); if max(cid)>nc | min(cid)<1, b = base; for i=1:nc, base(find(b==cid(i))) = i; end end % initial clusters clinds = cell(nc,1); for i=1:nc, clinds{i} = find(base==i); end % neighborhood constraint (calculate connection matrix Ne) if ischar(Ne), switch Ne, case 'any', Ne = []; case 'neighbors', if ischar(Ne), Ne = som_unit_neighs(sT); end otherwise, error(['Unrecognized connection mode ' Ne]); end end if ~isempty(Ne), l = size(Ne,1); Ne([0:l-1]*l+[1:l]) = 1; end % diagonal=1 if all(Ne(:)>0), Ne = []; end % neighborhood function values if strcmp(linkage,'neighf') if isempty(sTr), error('Cannot use neighf linkage.'); end q = som_unit_dists(sT).^2; r = sTr.radius_fin^2; if isnan(r) | isempty(r), r = 1; end switch sTr.neigh, case 'bubble', q = (q <= r); case 'gaussian', q = exp(-q/(2*r)); case 'cutgauss', q = exp(-q/(2*r)) .* (q <= r); case 'ep', q = (1-q/r) .* (q <= r); end end % mutual distances and initial cluster distances Cd = []; if any(strcmp(linkage,{'single','average','complete','neighf'})), M = som_mdist(M,2,mask,Ne); if (nc == dlen & all(base==[1:dlen])), Cd = M; end end if isempty(Cd), Cd = som_cldist(M,clinds,[],linkage,q,mask); end Cd([0:nc-1]*nc+[1:nc]) = NaN; % NaNs on the diagonal % check out from Ne which of the clusters are not connected if ~isempty(Ne) & any(strcmp(linkage,{'centroid','ward'})), Clconn = sparse(nc); for i=1:nc-1, for j=i+1:nc, Clconn(i,j) = any(any(Ne(clinds{i},clinds{j}))); end Clconn(i+1:nc,i) = Clconn(i,i+1:nc)'; end Cd(Clconn==0) = Inf; else Clconn = []; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% construct dendrogram clen = nc; cid = 1:clen; Z = zeros(nc-1,3)+NaN; % merged clusters and distance for each step if tracking, h = waitbar(0,'Making hierarchical clustering'); end for i=1:clen-1, if tracking, waitbar(i/clen,h); end % find two closest clusters and combine them [d,c1] = min(min(Cd)); % cluster1 [d,c2] = min(Cd(:,c1)); % cluster2 i1 = clinds{c1}; % vectors belonging to c1 i2 = clinds{c2}; % vectors belonging to c2 clinds{c1} = [i1; i2]; % insert clusters to c1 Z(i,:) = [cid(c1), cid(c2), d]; % update tree info % remove cluster c2 notc2 = [1:c2-1,c2+1:nc]; nc = nc-1; if nc<=1, break; end if c1>c2, c1=c1-1; end clinds = clinds(notc2); Cd = Cd(notc2,notc2); cid = cid(notc2); if ~isempty(Clconn), Clconn = Clconn(notc2,notc2); end % update cluster distances notc1 = [1:c1-1,c1+1:nc]; Cd(c1,notc1) = som_cldist(M,clinds(c1),clinds(notc1),linkage,q,mask); Cd(notc1,c1) = Cd(c1,notc1)'; if ~isempty(Clconn), for j=notc1, Clconn(c1,j) = any(any(Ne(clinds{c1},clinds{j}))); end Clconn(notc1,c1) = Clconn(c1,notc1)'; Cd(Clconn==0) = Inf; end end if tracking, close(h); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% return values % to maintain compatibility with Statistics Toolbox, the values in % Z must be yet transformed so that they are similar to the output % of LINKAGE function clen = size(Z,1)+1; Zs = Z; current_cluster = 1:clen; for i=1:size(Z,1), Zs(i,1) = current_cluster(Z(i,1)); Zs(i,2) = current_cluster(Z(i,2)); current_cluster(Z(i,[1 2])) = clen+i; end Z = Zs; % make a clustering struct name = sprintf('Clustering of %s at %s',data_name,datestr(datenum(now),0)); sC = som_clstruct(Z,'base',base,'name',name); return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%