Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/knn.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [C,P]=knn(d, Cp, K) %KNN K-Nearest Neighbor classifier using an arbitrary distance matrix % % [C,P]=knn(d, Cp, [K]) % % Input and output arguments ([]'s are optional): % d (matrix) of size NxP: This is a precalculated dissimilarity (distance matrix). % P is the number of prototype vectors and N is the number of data vectors % That is, d(i,j) is the distance between data item i and prototype j. % Cp (vector) of size Px1 that contains integer class labels. Cp(j) is the class of % jth prototype. % [K] (scalar) the maximum K in K-NN classifier, default is 1 % C (matrix) of size NxK: integers indicating the class % decision for data items according to the K-NN rule for each K. % C(i,K) is the classification for data item i using the K-NN rule % P (matrix) of size NxkxK: the relative amount of prototypes of % each class among the K closest prototypes for each classifiee. % That is, P(i,j,K) is the relative amount of prototypes of class j % among K nearest prototypes for data item i. % % If there is a tie between representatives of two or more classes % among the K closest neighbors to the classifiee, the class i selected randomly % among these candidates. % % IMPORTANT If K>1 this function uses 'sort' which is considerably slower than % 'max' which is used for K=1. If K>1 the knn always calculates % results for all K-NN models from 1-NN up to K-NN. % % EXAMPLE 1 % % sP; % a SOM Toolbox data struct containing labeled prototype vectors % [Cp,label]=som_label2num(sP); % get integer class labels for prototype vectors % sD; % a SOM Toolbox data struct containing vectors to be classified % d=som_eucdist2(sD,sP); % calculate euclidean distance matrix % class=knn(d,Cp,10); % classify using 1,2,...,10-rules % class(:,5); % includes results for 5NN % label(class(:,5)) % original class labels for 5NN % % EXAMPLE 2 (leave-one-out-crossvalidate KNN for selection of proper K) % % P; % a data matrix of prototype vectors (rows) % Cp; % column vector of integer class labels for vectors in P % d=som_eucdist2(P,P); % calculate euclidean distance matrix PxP % d(eye(size(d))==1)=NaN; % set self-dissimilarity to NaN: % % this drops the prototype itself away from its neighborhood % % leave-one-out-crossvalidation (LOOCV) % class=knn(d,Cp,size(P,1)); % classify using all possible K % % calculate and plot LOOC-validated errors for all K % failratep = ... % 100*sum((class~=repmat(Cp,1,size(P,1))))./size(P,1); plot(1:size(P,1),failratep) % See also SOM_LABEL2NUM, SOM_EUCDIST2, PDIST. % % Contributed to SOM Toolbox 2.0, October 29th, 2000 by Johan Himberg % Copyright (c) by Johan Himberg % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta Johan 291000 %% Init %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Check K if nargin<3 | isempty(K), K=1; end if ~vis_valuetype(K,{'1x1'}) error('Value for K must be a scalar'); end % Check that dist is a matrix if ~vis_valuetype(d,{'nxm'}), error('Distance matrix not valid.') end [N_data N_proto]=size(d); % Check class label vector: must be numerical and of integers if ~vis_valuetype(Cp,{[N_proto 1]}); error(['Class vector is invalid: has to be a N-of-data_rows x 1' ... ' vector of integers']); elseif sum(fix(Cp)-Cp)~=0 error('Class labels in vector ''Cp'' must be integers.'); end if size(d,2) ~= length(Cp), error('Distance matrix and prototype class vector dimensions do not match.'); end % Check if the classes are given as labels (no class input arg.) % if they are take them from prototype struct % Find all class labels ClassIndex=unique(Cp); N_class=length(ClassIndex); % number of different classes %%%% Classification %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if K==1, % sort distances only if K>1 % 1NN % Select the closest prototype [tmp,proto_index]=min(d,[],2); C=Cp(proto_index); else % Sort the prototypes for each classifiee according to distance [tmp, proto_index]=sort(d'); %% Select up to K closest prototypes proto_index=proto_index(1:K,:); knn_class=Cp(proto_index); for i=1:N_class, classcounter(:,:,i)=cumsum(knn_class==ClassIndex(i)); end %% Vote between classes of K neighbors [winner,vote_index]=max(classcounter,[],3); %%% Handle ties % Set index to classes that got as much votes as winner equal_to_winner=(repmat(winner,[1 1 N_class])==classcounter); % set index to ties [tie_indexi,tie_indexj]=find(sum(equal_to_winner,3)>1); % drop the winner from counter % Go through tie cases and reset vote_index randomly to one % of them for i=1:length(tie_indexi), tie_class_index=find(squeeze(equal_to_winner(tie_indexi(i),tie_indexj(i),:))); fortuna=randperm(length(tie_class_index)); vote_index(tie_indexi(i),tie_indexj(i))=tie_class_index(fortuna(1)); end C=ClassIndex(vote_index)'; end %% Build output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Relative amount of classes in K neighbors for each classifiee if K==1, P=zeros(N_data,N_class); if nargout>1, for i=1:N_data, P(i,ClassIndex==C(i))=1; end end else P=shiftdim(classcounter,1)./repmat(shiftdim(1:K,-1), [N_data N_class 1]); end