Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/db_index.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [t,r] = db_index(D, cl, C, p, q) % DB_INDEX Davies-Bouldin clustering evaluation index. % % [t,r] = db_index(D, cl, C, p, q) % % Input and output arguments ([]'s are optional): % D (matrix) data (n x dim) % (struct) map or data struct % cl (vector) cluster numbers corresponding to data samples (n x 1) % [C] (matrix) prototype vectors (c x dim) (default = cluster means) % [p] (scalar) norm used in the computation (default == 2) % [q] (scalar) moment used to calculate cluster dispersions (default = 2) % % t (scalar) Davies-Bouldin index for the clustering (=mean(r)) % r (vector) maximum DB index for each cluster (size c x 1) % % See also KMEANS, KMEANS_CLUSTERS, SOM_GAPINDEX. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% input arguments if isstruct(D), switch D.type, case 'som_map', D = D.codebook; case 'som_data', D = D.data; end end % cluster centroids [l dim] = size(D); u = unique(cl); c = length(u); if nargin <3, C = zeros(c,dim); for i=1:c, me = nanstats(D(find(cl==u(i)),:)); C(i,:) = me'; end end u2i = zeros(max(u),1); u2i(u) = 1:c; D = som_fillnans(D,C,u2i(cl)); % replace NaN's with cluster centroid values if nargin <4, p = 2; end % euclidian distance between cluster centers if nargin <5, q = 2; end % dispersion = standard deviation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% action % dispersion in each cluster for i = 1:c ind = find(cl==u(i)); % points in this cluster l = length(ind); if l > 0 S(i) = (mean(sqrt(sum((D(ind,:) - ones(l,1) * C(i,:)).^2,2)).^q))^(1/q); else S(i) = NaN; end end % distances between clusters %for i = 1:c % for j = i+1:c % M(i,j) = sum(abs(C(i,:) - C(j,:)).^p)^(1/p); % end %end M = som_mdist(C,p); % Davies-Bouldin index R = NaN * zeros(c); r = NaN * zeros(c,1); for i = 1:c for j = i+1:c R(i,j) = (S(i) + S(j))/M(i,j); end r(i) = max(R(i,:)); end t = mean(r(isfinite(r))); return;