Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/AuditoryToolbox/rasta.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function y=rasta(x,fs,low,high) % function y=rasta(x,fs) where x is the input data (rows of time data), % and fs is the frame rate (sampling rate) in Hz. This is a modified % version of the original filter. Here the RASTA filter is approximated % by a simple fourth order Butterworth bandpass filter. See pages 50-51 % of my second IRC logbook for the derivation. % % Hermansky and Morgan, "RASTA Processing of Speech." IEEE Transactions % on Speech and Audio Processing. vol. 2, no. 4, October 1994 % % (c) 1998 Interval Research Corporation % Malcolm Slaney, January 30, 1996, Interval Research Corporation if (nargin < 2); fs=100; end if (nargin < 3); low=.9; end if (nargin < 4); high=12.8; end if (low == 0 & high == 0) % Original Filter num = .1*[2 1 0 -1 -2]; denum = [1 -.94]; else % New fourth order % Butterworth BP filter w1=low/fs*2*pi; w2=high/fs*2*pi; theta=1; a=cos((w1+w2)/2)/cos((w2-w1)/2); k=cot((w2-w1)/2)*tan(theta/2); num = [1 0 -2 0 1]; denum = [(1 + 2*2^(1/2)*k + 4*k^2) ... (-4*2^(1/2)*a*k - 16*a*k^2) ... (-2 + 8*k^2 + 16*a^2*k^2) ... (4*2^(1/2)*a*k - 16*a*k^2) ... (1 - 2*2^(1/2)*k + 4*k^2)]; scale = denum(1); % Scale by a(1) component num = num/scale; denum = denum/scale; end if (0) len = 1024; impulse = zeros(1,len); impulse(1) = 1; y=filter(num,denum,impulse); ym = abs(fft(y)); ym=20*log10(ym); f=(0:(len-1))/len*fs; semilogx(f(1:len/2),ym(1:len/2)); drawnow; end if (length(x) == size(x,1)*size(x,2)) y = filter(num,denum,x,x(1)*[-1 -1 1 1]); else y = zeros(size(x)); for i=1:size(x,1) y(i,:) = filter(num,denum,x(i,:),x(i,1)*[-1 -1 1 1]/scale); end end