Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/AuditoryToolbox/mfcc.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% mfcc - Mel frequency cepstrum coefficient analysis. % [ceps,freqresp,fb,fbrecon,freqrecon] = ... % mfcc(input, samplingRate, [frameRate]) % Find the cepstral coefficients (ceps) corresponding to the % input. Four other quantities are optionally returned that % represent: % the detailed fft magnitude (freqresp) used in MFCC calculation, % the mel-scale filter bank output (fb) % the filter bank output by inverting the cepstrals with a cosine % transform (fbrecon), % the smooth frequency response by interpolating the fb reconstruction % (freqrecon) % -- Malcolm Slaney, August 1993 % Modified a bit to make testing an algorithm easier... 4/15/94 % Fixed Cosine Transform (indices of cos() were swapped) - 5/26/95 % Added optional frameRate argument - 6/8/95 % Added proper filterbank reconstruction using inverse DCT - 10/27/95 % Added filterbank inversion to reconstruct spectrum - 11/1/95 % (c) 1998 Interval Research Corporation function [ceps,freqresp,fb,fbrecon,freqrecon] = ... mfcc(input, samplingRate, frameRate) global mfccDCTMatrix mfccFilterWeights [r c] = size(input); if (r > c) input=input'; end % Filter bank parameters lowestFrequency = 133.3333; linearFilters = 13; linearSpacing = 66.66666666; logFilters = 27; logSpacing = 1.0711703; fftSize = 512; cepstralCoefficients = 13; windowSize = 400; windowSize = 256; % Standard says 400, but 256 makes more sense % Really should be a function of the sample % rate (and the lowestFrequency) and the % frame rate. if (nargin < 2) samplingRate = 16000; end; if (nargin < 3) frameRate = 100; end; % Keep this around for later.... totalFilters = linearFilters + logFilters; % Now figure the band edges. Interesting frequencies are spaced % by linearSpacing for a while, then go logarithmic. First figure % all the interesting frequencies. Lower, center, and upper band % edges are all consequtive interesting frequencies. freqs = lowestFrequency + (0:linearFilters-1)*linearSpacing; freqs(linearFilters+1:totalFilters+2) = ... freqs(linearFilters) * logSpacing.^(1:logFilters+2); lower = freqs(1:totalFilters); center = freqs(2:totalFilters+1); upper = freqs(3:totalFilters+2); % We now want to combine FFT bins so that each filter has unit % weight, assuming a triangular weighting function. First figure % out the height of the triangle, then we can figure out each % frequencies contribution mfccFilterWeights = zeros(totalFilters,fftSize); triangleHeight = 2./(upper-lower); fftFreqs = (0:fftSize-1)/fftSize*samplingRate; for chan=1:totalFilters mfccFilterWeights(chan,:) = ... (fftFreqs > lower(chan) & fftFreqs <= center(chan)).* ... triangleHeight(chan).*(fftFreqs-lower(chan))/(center(chan)-lower(chan)) + ... (fftFreqs > center(chan) & fftFreqs < upper(chan)).* ... triangleHeight(chan).*(upper(chan)-fftFreqs)/(upper(chan)-center(chan)); end %semilogx(fftFreqs,mfccFilterWeights') %axis([lower(1) upper(totalFilters) 0 max(max(mfccFilterWeights))]) hamWindow = 0.54 - 0.46*cos(2*pi*(0:windowSize-1)/windowSize); if 0 % Window it like ComplexSpectrum windowStep = samplingRate/frameRate; a = .54; b = -.46; wr = sqrt(windowStep/windowSize); phi = pi/windowSize; hamWindow = 2*wr/sqrt(4*a*a+2*b*b)* ... (a + b*cos(2*pi*(0:windowSize-1)/windowSize + phi)); end % Figure out Discrete Cosine Transform. We want a matrix % dct(i,j) which is totalFilters x cepstralCoefficients in size. % The i,j component is given by % cos( i * (j+0.5)/totalFilters pi ) % where we have assumed that i and j start at 0. mfccDCTMatrix = 1/sqrt(totalFilters/2)*cos((0:(cepstralCoefficients-1))' * ... (2*(0:(totalFilters-1))+1) * pi/2/totalFilters); mfccDCTMatrix(1,:) = mfccDCTMatrix(1,:) * sqrt(2)/2; %imagesc(mfccDCTMatrix); % Filter the input with the preemphasis filter. Also figure how % many columns of data we will end up with. if 1 preEmphasized = filter([1 -.97], 1, input); else preEmphasized = input; end windowStep = samplingRate/frameRate; cols = fix((length(input)-windowSize)/windowStep); % Allocate all the space we need for the output arrays. ceps = zeros(cepstralCoefficients, cols); if (nargout > 1) freqresp = zeros(fftSize/2, cols); end; if (nargout > 2) fb = zeros(totalFilters, cols); end; % Invert the filter bank center frequencies. For each FFT bin % we want to know the exact position in the filter bank to find % the original frequency response. The next block of code finds the % integer and fractional sampling positions. if (nargout > 4) fr = (0:(fftSize/2-1))'/(fftSize/2)*samplingRate/2; j = 1; for i=1:(fftSize/2) if fr(i) > center(j+1) j = j + 1; end if j > totalFilters-1 j = totalFilters-1; end fr(i) = min(totalFilters-.0001, ... max(1,j + (fr(i)-center(j))/(center(j+1)-center(j)))); end fri = fix(fr); frac = fr - fri; freqrecon = zeros(fftSize/2, cols); end % Ok, now let's do the processing. For each chunk of data: % * Window the data with a hamming window, % * Shift it into FFT order, % * Find the magnitude of the fft, % * Convert the fft data into filter bank outputs, % * Find the log base 10, % * Find the cosine transform to reduce dimensionality. for start=0:cols-1 first = start*windowStep + 1; last = first + windowSize-1; fftData = zeros(1,fftSize); fftData(1:windowSize) = preEmphasized(first:last).*hamWindow; fftMag = abs(fft(fftData)); earMag = log10(mfccFilterWeights * fftMag'); ceps(:,start+1) = mfccDCTMatrix * earMag; if (nargout > 1) freqresp(:,start+1) = fftMag(1:fftSize/2)'; end; if (nargout > 2) fb(:,start+1) = earMag; end if (nargout > 3) fbrecon(:,start+1) = ... mfccDCTMatrix(1:cepstralCoefficients,:)' * ... ceps(:,start+1); end if (nargout > 4) f10 = 10.^fbrecon(:,start+1); freqrecon(:,start+1) = samplingRate/fftSize * ... (f10(fri).*(1-frac) + f10(fri+1).*frac); end end % OK, just to check things, let's also reconstruct the original FB % output. We do this by multiplying the cepstral data by the transpose % of the original DCT matrix. This all works because we were careful to % scale the DCT matrix so it was orthonormal. if 1 & (nargout > 3) fbrecon = mfccDCTMatrix(1:cepstralCoefficients,:)' * ceps; % imagesc(mt(:,1:cepstralCoefficients)*mfccDCTMatrix); end;