Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlabKPM/gmmem_multi_restart.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [means, covs, weights, ll] = gmmem_multi_restart(K, data, varargin) % GMMEM_MULTI_RESTART Multiple restart wrapper for gmmem_kpm % function [means, covs, weights, ll] = gmmem_multi_restart(K, data, varargin) % % Input: % K = number of mixture components % data(i,:) is the i'th example (feature vector) % % Output: % The parameters for the k'th mixture component, k=1:K, are % means(k,:), covs(:,:,k) and weights(k) % % [ ... ] = gmmem_multi_restart(..., 'param1',val1, 'param2',val2, ...) % allows you to specify optional parameter name/value pairs. % Parameters are below [default value in brackets] % % 'nrestarts' - number of EM restarts [2] % 'cov_type' - 'full', 'diag' or 'spherical' ['full'] % 'init_cov' - the initial covariance matrix [0.1*cov(data) for each k] % 'init_means' - [] means sample from randn(); otherwise, use % init_means(k,:,r) for the k'th comp. on the r'th restart [ [] ] % 'restartfn' - this function, if non-empty, will be called before/after every restart % (e.g., to display the parameters as they evolve) [ [] ] % The fn is called as fn(mix{r}, data, restart_num, niter, outerfnargs) % where niter is the number of iterations performed (0 initially) % 'restartfnargs' - additional arguments to be passed to restartfn [ {} ] % % Optional arguments for gmmem_kpm are passed through. % % Written by Kevin P Murphy, 30 Dec 2002 [ndata nfeatures] = size(data); %Cinit = repmat(0.1*diag(diag(cov(data))), [1 1 K]); Cinit = repmat(0.1*cov(data), [1 1 K]); [nrestarts, init_cov, init_means, cov_type, ... restartfn, restartfnargs, unused_args] = ... process_options(varargin, ... 'nrestarts', 2, 'init_cov', Cinit, 'init_means', [], ... 'cov_type', 'full', 'restartfn', [], 'restartfnargs', {}); mix = cell(1, nrestarts); cost = inf*ones(1,nrestarts); for r=1:nrestarts mix{r} = gmm(nfeatures, K, cov_type); % random centers if ~isempty(init_means), mix{r}.centres = init_means(:,:,r); end mix{r}.covars = init_cov; if ~isempty(restartfn) feval(restartfn, mix{r}, data, r, 0, restartfnargs{:}); end [mix{r}, niter, ll] = gmmem_kpm(mix{r}, data, unused_args{:}); cost(r) = -ll; %-sum(log(gmmprob(mix{r}, data))); if ~isempty(restartfn) feval(restartfn, mix{r}, data, r, niter, restartfnargs{:}); end end [nll, bestr] = min(cost); fprintf('best r = %d\n', bestr); ll = -nll; means = mix{bestr}.centres; covs = mix{bestr}.covars; weights = mix{bestr}.priors;