Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlabKPM/glmgrad_weighted.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [g, gdata, gprior] = glmgrad(net, x, t, eso_w) %GLMGRAD Evaluate gradient of error function for generalized linear model. % % Description % G = GLMGRAD(NET, X, T) takes a generalized linear model data % structure NET together with a matrix X of input vectors and a matrix % T of target vectors, and evaluates the gradient G of the error % function with respect to the network weights. The error function % corresponds to the choice of output unit activation function. Each % row of X corresponds to one input vector and each row of T % corresponds to one target vector. % % [G, GDATA, GPRIOR] = GLMGRAD(NET, X, T) also returns separately the % data and prior contributions to the gradient. % % See also % GLM, GLMPAK, GLMUNPAK, GLMFWD, GLMERR, GLMTRAIN % % Copyright (c) Ian T Nabney (1996-9) % Check arguments for consistency errstring = consist(net, 'glm', x, t); if ~isempty(errstring); error(errstring); end y = glmfwd(net, x); temp = y - t; ndata = size(x, 1); for m=1:ndata, delout(m,:)=eso_w(m,1)*temp(m,:); end gw1 = x'*delout; gb1 = sum(delout, 1); gdata = [gw1(:)', gb1]; [g, gdata, gprior] = gbayes(net, gdata);