Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/scg.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [x, options, flog, pointlog, scalelog] = scg(f, x, options, gradf, varargin) %SCG Scaled conjugate gradient optimization. % % Description % [X, OPTIONS] = SCG(F, X, OPTIONS, GRADF) uses a scaled conjugate % gradients algorithm to find a local minimum of the function F(X) % whose gradient is given by GRADF(X). Here X is a row vector and F % returns a scalar value. The point at which F has a local minimum is % returned as X. The function value at that point is returned in % OPTIONS(8). % % [X, OPTIONS, FLOG, POINTLOG, SCALELOG] = SCG(F, X, OPTIONS, GRADF) % also returns (optionally) a log of the function values after each % cycle in FLOG, a log of the points visited in POINTLOG, and a log of % the scale values in the algorithm in SCALELOG. % % SCG(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional arguments to % be passed to F() and GRADF(). The optional parameters have the % following interpretations. % % OPTIONS(1) is set to 1 to display error values; also logs error % values in the return argument ERRLOG, and the points visited in the % return argument POINTSLOG. If OPTIONS(1) is set to 0, then only % warning messages are displayed. If OPTIONS(1) is -1, then nothing is % displayed. % % OPTIONS(2) is a measure of the absolute precision required for the % value of X at the solution. If the absolute difference between the % values of X between two successive steps is less than OPTIONS(2), % then this condition is satisfied. % % OPTIONS(3) is a measure of the precision required of the objective % function at the solution. If the absolute difference between the % objective function values between two successive steps is less than % OPTIONS(3), then this condition is satisfied. Both this and the % previous condition must be satisfied for termination. % % OPTIONS(9) is set to 1 to check the user defined gradient function. % % OPTIONS(10) returns the total number of function evaluations % (including those in any line searches). % % OPTIONS(11) returns the total number of gradient evaluations. % % OPTIONS(14) is the maximum number of iterations; default 100. % % See also % CONJGRAD, QUASINEW % % Copyright (c) Ian T Nabney (1996-2001) % Set up the options. if length(options) < 18 error('Options vector too short') end if(options(14)) niters = options(14); else niters = 100; end display = options(1); gradcheck = options(9); % Set up strings for evaluating function and gradient f = fcnchk(f, length(varargin)); gradf = fcnchk(gradf, length(varargin)); nparams = length(x); % Check gradients if (gradcheck) feval('gradchek', x, f, gradf, varargin{:}); end sigma0 = 1.0e-4; fold = feval(f, x, varargin{:}); % Initial function value. fnow = fold; options(10) = options(10) + 1; % Increment function evaluation counter. gradnew = feval(gradf, x, varargin{:}); % Initial gradient. gradold = gradnew; options(11) = options(11) + 1; % Increment gradient evaluation counter. d = -gradnew; % Initial search direction. success = 1; % Force calculation of directional derivs. nsuccess = 0; % nsuccess counts number of successes. beta = 1.0; % Initial scale parameter. betamin = 1.0e-15; % Lower bound on scale. betamax = 1.0e100; % Upper bound on scale. j = 1; % j counts number of iterations. if nargout >= 3 flog(j, :) = fold; if nargout == 4 pointlog(j, :) = x; end end % Main optimization loop. while (j <= niters) % Calculate first and second directional derivatives. if (success == 1) mu = d*gradnew'; if (mu >= 0) d = - gradnew; mu = d*gradnew'; end kappa = d*d'; if kappa < eps options(8) = fnow; return end sigma = sigma0/sqrt(kappa); xplus = x + sigma*d; gplus = feval(gradf, xplus, varargin{:}); options(11) = options(11) + 1; theta = (d*(gplus' - gradnew'))/sigma; end % Increase effective curvature and evaluate step size alpha. delta = theta + beta*kappa; if (delta <= 0) delta = beta*kappa; beta = beta - theta/kappa; end alpha = - mu/delta; % Calculate the comparison ratio. xnew = x + alpha*d; fnew = feval(f, xnew, varargin{:}); options(10) = options(10) + 1; Delta = 2*(fnew - fold)/(alpha*mu); if (Delta >= 0) success = 1; nsuccess = nsuccess + 1; x = xnew; fnow = fnew; else success = 0; fnow = fold; end if nargout >= 3 % Store relevant variables flog(j) = fnow; % Current function value if nargout >= 4 pointlog(j,:) = x; % Current position if nargout >= 5 scalelog(j) = beta; % Current scale parameter end end end if display > 0 fprintf(1, 'Cycle %4d Error %11.6f Scale %e\n', j, fnow, beta); end if (success == 1) % Test for termination if (max(abs(alpha*d)) < options(2) & max(abs(fnew-fold)) < options(3)) options(8) = fnew; return; else % Update variables for new position fold = fnew; gradold = gradnew; gradnew = feval(gradf, x, varargin{:}); options(11) = options(11) + 1; % If the gradient is zero then we are done. if (gradnew*gradnew' == 0) options(8) = fnew; return; end end end % Adjust beta according to comparison ratio. if (Delta < 0.25) beta = min(4.0*beta, betamax); end if (Delta > 0.75) beta = max(0.5*beta, betamin); end % Update search direction using Polak-Ribiere formula, or re-start % in direction of negative gradient after nparams steps. if (nsuccess == nparams) d = -gradnew; nsuccess = 0; else if (success == 1) gamma = (gradold - gradnew)*gradnew'/(mu); d = gamma*d - gradnew; end end j = j + 1; end % If we get here, then we haven't terminated in the given number of % iterations. options(8) = fold; if (options(1) >= 0) disp(maxitmess); end