Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/quasinew.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [x, options, flog, pointlog] = quasinew(f, x, options, gradf, ... varargin) %QUASINEW Quasi-Newton optimization. % % Description % [X, OPTIONS, FLOG, POINTLOG] = QUASINEW(F, X, OPTIONS, GRADF) uses a % quasi-Newton algorithm to find a local minimum of the function F(X) % whose gradient is given by GRADF(X). Here X is a row vector and F % returns a scalar value. The point at which F has a local minimum is % returned as X. The function value at that point is returned in % OPTIONS(8). A log of the function values after each cycle is % (optionally) returned in FLOG, and a log of the points visited is % (optionally) returned in POINTLOG. % % QUASINEW(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional % arguments to be passed to F() and GRADF(). % % The optional parameters have the following interpretations. % % OPTIONS(1) is set to 1 to display error values; also logs error % values in the return argument ERRLOG, and the points visited in the % return argument POINTSLOG. If OPTIONS(1) is set to 0, then only % warning messages are displayed. If OPTIONS(1) is -1, then nothing is % displayed. % % OPTIONS(2) is a measure of the absolute precision required for the % value of X at the solution. If the absolute difference between the % values of X between two successive steps is less than OPTIONS(2), % then this condition is satisfied. % % OPTIONS(3) is a measure of the precision required of the objective % function at the solution. If the absolute difference between the % objective function values between two successive steps is less than % OPTIONS(3), then this condition is satisfied. Both this and the % previous condition must be satisfied for termination. % % OPTIONS(9) should be set to 1 to check the user defined gradient % function. % % OPTIONS(10) returns the total number of function evaluations % (including those in any line searches). % % OPTIONS(11) returns the total number of gradient evaluations. % % OPTIONS(14) is the maximum number of iterations; default 100. % % OPTIONS(15) is the precision in parameter space of the line search; % default 1E-2. % % See also % CONJGRAD, GRADDESC, LINEMIN, MINBRACK, SCG % % Copyright (c) Ian T Nabney (1996-2001) % Set up the options. if length(options) < 18 error('Options vector too short') end if(options(14)) niters = options(14); else niters = 100; end % Set up options for line search line_options = foptions; % Don't need a very precise line search if options(15) > 0 line_options(2) = options(15); else line_options(2) = 1e-2; % Default end % Minimal fractional change in f from Newton step: otherwise do a line search min_frac_change = 1e-4; display = options(1); % Next two lines allow quasinew to work with expression strings f = fcnchk(f, length(varargin)); gradf = fcnchk(gradf, length(varargin)); % Check gradients if (options(9)) feval('gradchek', x, f, gradf, varargin{:}); end nparams = length(x); fnew = feval(f, x, varargin{:}); options(10) = options(10) + 1; gradnew = feval(gradf, x, varargin{:}); options(11) = options(11) + 1; p = -gradnew; % Search direction hessinv = eye(nparams); % Initialise inverse Hessian to be identity matrix j = 1; if nargout >= 3 flog(j, :) = fnew; if nargout == 4 pointlog(j, :) = x; end end while (j <= niters) xold = x; fold = fnew; gradold = gradnew; x = xold + p; fnew = feval(f, x, varargin{:}); options(10) = options(10) + 1; % This shouldn't occur, but rest of code depends on sd being downhill if (gradnew*p' >= 0) p = -p; if options(1) >= 0 warning('search direction uphill in quasinew'); end end % Does the Newton step reduce the function value sufficiently? if (fnew >= fold + min_frac_change * (gradnew*p')) % No it doesn't % Minimize along current search direction: must be less than Newton step [lmin, line_options] = feval('linemin', f, xold, p, fold, ... line_options, varargin{:}); options(10) = options(10) + line_options(10); options(11) = options(11) + line_options(11); % Correct x and fnew to be the actual search point we have found x = xold + lmin * p; p = x - xold; fnew = line_options(8); end % Check for termination if (max(abs(x - xold)) < options(2) & max(abs(fnew - fold)) < options(3)) options(8) = fnew; return; end gradnew = feval(gradf, x, varargin{:}); options(11) = options(11) + 1; v = gradnew - gradold; vdotp = v*p'; % Skip update to inverse Hessian if fac not sufficiently positive if (vdotp*vdotp > eps*sum(v.^2)*sum(p.^2)) Gv = (hessinv*v')'; vGv = sum(v.*Gv); u = p./vdotp - Gv./vGv; % Use BFGS update rule hessinv = hessinv + (p'*p)/vdotp - (Gv'*Gv)/vGv + vGv*(u'*u); end p = -(hessinv * gradnew')'; if (display > 0) fprintf(1, 'Cycle %4d Function %11.6f\n', j, fnew); end j = j + 1; if nargout >= 3 flog(j, :) = fnew; if nargout == 4 pointlog(j, :) = x; end end end % If we get here, then we haven't terminated in the given number of % iterations. options(8) = fold; if (options(1) >= 0) disp(maxitmess); end