Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/mdninit.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function net = mdninit(net, prior, t, options) %MDNINIT Initialise the weights in a Mixture Density Network. % % Description % % NET = MDNINIT(NET, PRIOR) takes a Mixture Density Network NET and % sets the weights and biases by sampling from a Gaussian distribution. % It calls MLPINIT for the MLP component of NET. % % NET = MDNINIT(NET, PRIOR, T, OPTIONS) uses the target data T to % initialise the biases for the output units after initialising the % other weights as above. It calls GMMINIT, with T and OPTIONS as % arguments, to obtain a model of the unconditional density of T. The % biases are then set so that NET will output the values in the % Gaussian mixture model. % % See also % MDN, MLP, MLPINIT, GMMINIT % % Copyright (c) Ian T Nabney (1996-2001) % David J Evans (1998) % Initialise network weights from prior: this gives noise around values % determined later net.mlp = mlpinit(net.mlp, prior); if nargin > 2 % Initialise priors, centres and variances from target data temp_mix = gmm(net.mdnmixes.dim_target, net.mdnmixes.ncentres, 'spherical'); temp_mix = gmminit(temp_mix, t, options); ncentres = net.mdnmixes.ncentres; dim_target = net.mdnmixes.dim_target; % Now set parameters in MLP to yield the right values. % This involves setting the biases correctly. % Priors net.mlp.b2(1:ncentres) = temp_mix.priors; % Centres are arranged in mlp such that we have % u11, u12, u13, ..., u1c, ... , uj1, uj2, uj3, ..., ujc, ..., um1, uM2, % ..., uMc % This is achieved by transposing temp_mix.centres before reshaping end_centres = ncentres*(dim_target+1); net.mlp.b2(ncentres+1:end_centres) = ... reshape(temp_mix.centres', 1, ncentres*dim_target); % Variances net.mlp.b2((end_centres+1):net.mlp.nout) = ... log(temp_mix.covars); end