Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/linemin.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [x, options] = linemin(f, pt, dir, fpt, options, ... varargin) %LINEMIN One dimensional minimization. % % Description % [X, OPTIONS] = LINEMIN(F, PT, DIR, FPT, OPTIONS) uses Brent's % algorithm to find the minimum of the function F(X) along the line DIR % through the point PT. The function value at the starting point is % FPT. The point at which F has a local minimum is returned as X. The % function value at that point is returned in OPTIONS(8). % % LINEMIN(F, PT, DIR, FPT, OPTIONS, P1, P2, ...) allows additional % arguments to be passed to F(). % % The optional parameters have the following interpretations. % % OPTIONS(1) is set to 1 to display error values. % % OPTIONS(2) is a measure of the absolute precision required for the % value of X at the solution. % % OPTIONS(3) is a measure of the precision required of the objective % function at the solution. Both this and the previous condition must % be satisfied for termination. % % OPTIONS(14) is the maximum number of iterations; default 100. % % See also % CONJGRAD, MINBRACK, QUASINEW % % Copyright (c) Ian T Nabney (1996-2001) % Set up the options. if(options(14)) niters = options(14); else niters = 100; end options(10) = 0; % Initialise count of function evaluations display = options(1); % Check function string f = fcnchk(f, length(varargin)); % Value of golden section (1 + sqrt(5))/2.0 phi = 1.6180339887499; cphi = 1 - 1/phi; TOL = sqrt(eps); % Maximal fractional precision TINY = 1.0e-10; % Can't use fractional precision when minimum is at 0 % Bracket the minimum [br_min, br_mid, br_max, num_evals] = feval('minbrack', 'linef', ... 0.0, 1.0, fpt, f, pt, dir, varargin{:}); options(10) = options(10) + num_evals; % Increment number of fn. evals % No gradient evals in minbrack % Use Brent's algorithm to find minimum % Initialise the points and function values w = br_mid; % Where second from minimum is v = br_mid; % Previous value of w x = v; % Where current minimum is e = 0.0; % Distance moved on step before last fx = feval('linef', x, f, pt, dir, varargin{:}); options(10) = options(10) + 1; fv = fx; fw = fx; for n = 1:niters xm = 0.5.*(br_min+br_max); % Middle of bracket % Make sure that tolerance is big enough tol1 = TOL * (max(abs(x))) + TINY; % Decide termination on absolute precision required by options(2) if (max(abs(x - xm)) <= options(2) & br_max-br_min < 4*options(2)) options(8) = fx; return; end % Check if step before last was big enough to try a parabolic step. % Note that this will fail on first iteration, which must be a golden % section step. if (max(abs(e)) > tol1) % Construct a trial parabolic fit through x, v and w r = (fx - fv) .* (x - w); q = (fx - fw) .* (x - v); p = (x - v).*q - (x - w).*r; q = 2.0 .* (q - r); if (q > 0.0) p = -p; end q = abs(q); % Test if the parabolic fit is OK if (abs(p) >= abs(0.5*q*e) | p <= q*(br_min-x) | p >= q*(br_max-x)) % No it isn't, so take a golden section step if (x >= xm) e = br_min-x; else e = br_max-x; end d = cphi*e; else % Yes it is, so take the parabolic step e = d; d = p/q; u = x+d; if (u-br_min < 2*tol1 | br_max-u < 2*tol1) d = sign(xm-x)*tol1; end end else % Step before last not big enough, so take a golden section step if (x >= xm) e = br_min - x; else e = br_max - x; end d = cphi*e; end % Make sure that step is big enough if (abs(d) >= tol1) u = x+d; else u = x + sign(d)*tol1; end % Evaluate function at u fu = feval('linef', u, f, pt, dir, varargin{:}); options(10) = options(10) + 1; % Reorganise bracket if (fu <= fx) if (u >= x) br_min = x; else br_max = x; end v = w; w = x; x = u; fv = fw; fw = fx; fx = fu; else if (u < x) br_min = u; else br_max = u; end if (fu <= fw | w == x) v = w; w = u; fv = fw; fw = fu; elseif (fu <= fv | v == x | v == w) v = u; fv = fu; end end if (display == 1) fprintf(1, 'Cycle %4d Error %11.6f\n', n, fx); end end options(8) = fx;