Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/hbayes.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [h, hdata] = hbayes(net, hdata) %HBAYES Evaluate Hessian of Bayesian error function for network. % % Description % H = HBAYES(NET, HDATA) takes a network data structure NET together % the data contribution to the Hessian for a set of inputs and targets. % It returns the regularised Hessian using any zero mean Gaussian % priors on the weights defined in NET. In addition, if a MASK is % defined in NET, then the entries in H that correspond to weights with % a 0 in the mask are removed. % % [H, HDATA] = HBAYES(NET, HDATA) additionally returns the data % component of the Hessian. % % See also % GBAYES, GLMHESS, MLPHESS, RBFHESS % % Copyright (c) Ian T Nabney (1996-2001) if (isfield(net, 'mask')) % Extract relevant entries in Hessian nmask_rows = size(find(net.mask), 1); hdata = reshape(hdata(logical(net.mask*(net.mask'))), ... nmask_rows, nmask_rows); nwts = nmask_rows; else nwts = net.nwts; end if isfield(net, 'beta') h = net.beta*hdata; else h = hdata; end if isfield(net, 'alpha') if size(net.alpha) == [1 1] h = h + net.alpha*eye(nwts); else if isfield(net, 'mask') nindx_cols = size(net.index, 2); index = reshape(net.index(logical(repmat(net.mask, ... 1, nindx_cols))), nmask_rows, nindx_cols); else index = net.index; end h = h + diag(index*net.alpha); end end