Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/gtmem.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [net, options, errlog] = gtmem(net, t, options) %GTMEM EM algorithm for Generative Topographic Mapping. % % Description % [NET, OPTIONS, ERRLOG] = GTMEM(NET, T, OPTIONS) uses the Expectation % Maximization algorithm to estimate the parameters of a GTM defined by % a data structure NET. The matrix T represents the data whose % expectation is maximized, with each row corresponding to a vector. % It is assumed that the latent data NET.X has been set following a % call to GTMINIT, for example. The optional parameters have the % following interpretations. % % OPTIONS(1) is set to 1 to display error values; also logs error % values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then % only warning messages are displayed. If OPTIONS(1) is -1, then % nothing is displayed. % % OPTIONS(3) is a measure of the absolute precision required of the % error function at the solution. If the change in log likelihood % between two steps of the EM algorithm is less than this value, then % the function terminates. % % OPTIONS(14) is the maximum number of iterations; default 100. % % The optional return value OPTIONS contains the final error value % (i.e. data log likelihood) in OPTIONS(8). % % See also % GTM, GTMINIT % % Copyright (c) Ian T Nabney (1996-2001) % Check that inputs are consistent errstring = consist(net, 'gtm', t); if ~isempty(errstring) error(errstring); end % Sort out the options if (options(14)) niters = options(14); else niters = 100; end display = options(1); store = 0; if (nargout > 2) store = 1; % Store the error values to return them errlog = zeros(1, niters); end test = 0; if options(3) > 0.0 test = 1; % Test log likelihood for termination end % Calculate various quantities that remain constant during training [ndata, tdim] = size(t); ND = ndata*tdim; [net.gmmnet.centres, Phi] = rbffwd(net.rbfnet, net.X); Phi = [Phi ones(size(net.X, 1), 1)]; PhiT = Phi'; [K, Mplus1] = size(Phi); A = zeros(Mplus1, Mplus1); cholDcmp = zeros(Mplus1, Mplus1); % Use a sparse representation for the weight regularizing matrix. if (net.rbfnet.alpha > 0) Alpha = net.rbfnet.alpha*speye(Mplus1); Alpha(Mplus1, Mplus1) = 0; end for n = 1:niters % Calculate responsibilities [R, act] = gtmpost(net, t); % Calculate error value if needed if (display | store | test) prob = act*(net.gmmnet.priors)'; % Error value is negative log likelihood of data e = - sum(log(max(prob,eps))); if store errlog(n) = e; end if display > 0 fprintf(1, 'Cycle %4d Error %11.6f\n', n, e); end if test if (n > 1 & abs(e - eold) < options(3)) options(8) = e; return; else eold = e; end end end % Calculate matrix be inverted (Phi'*G*Phi + alpha*I in the papers). % Sparse representation of G normally executes faster and saves % memory if (net.rbfnet.alpha > 0) A = full(PhiT*spdiags(sum(R)', 0, K, K)*Phi + ... (Alpha.*net.gmmnet.covars(1))); else A = full(PhiT*spdiags(sum(R)', 0, K, K)*Phi); end % A is a symmetric matrix likely to be positive definite, so try % fast Cholesky decomposition to calculate W, otherwise use SVD. % (PhiT*(R*t)) is computed right-to-left, as R % and t are normally (much) larger than PhiT. [cholDcmp singular] = chol(A); if (singular) if (display) fprintf(1, ... 'gtmem: Warning -- M-Step matrix singular, using pinv.\n'); end W = pinv(A)*(PhiT*(R'*t)); else W = cholDcmp \ (cholDcmp' \ (PhiT*(R'*t))); end % Put new weights into network to calculate responsibilities % net.rbfnet = netunpak(net.rbfnet, W); net.rbfnet.w2 = W(1:net.rbfnet.nhidden, :); net.rbfnet.b2 = W(net.rbfnet.nhidden+1, :); % Calculate new distances d = dist2(t, Phi*W); % Calculate new value for beta net.gmmnet.covars = ones(1, net.gmmnet.ncentres)*(sum(sum(d.*R))/ND); end options(8) = -sum(log(gtmprob(net, t))); if (display >= 0) disp(maxitmess); end