Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/gpfwd.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [y, sigsq] = gpfwd(net, x, cninv) %GPFWD Forward propagation through Gaussian Process. % % Description % Y = GPFWD(NET, X) takes a Gaussian Process data structure NET % together with a matrix X of input vectors, and forward propagates % the inputs through the model to generate a matrix Y of output % vectors. Each row of X corresponds to one input vector and each row % of Y corresponds to one output vector. This assumes that the % training data (both inputs and targets) has been stored in NET by a % call to GPINIT; these are needed to compute the training data % covariance matrix. % % [Y, SIGSQ] = GPFWD(NET, X) also generates a column vector SIGSQ of % conditional variances (or squared error bars) where each value % corresponds to a pattern. % % [Y, SIGSQ] = GPFWD(NET, X, CNINV) uses the pre-computed inverse % covariance matrix CNINV in the forward propagation. This increases % efficiency if several calls to GPFWD are made. % % See also % GP, DEMGP, GPINIT % % Copyright (c) Ian T Nabney (1996-2001) errstring = consist(net, 'gp', x); if ~isempty(errstring); error(errstring); end if ~(isfield(net, 'tr_in') & isfield(net, 'tr_targets')) error('Require training inputs and targets'); end if nargin == 2 % Inverse covariance matrix not supplied. cninv = inv(gpcovar(net, net.tr_in)); end ktest = gpcovarp(net, x, net.tr_in); % Predict mean y = ktest*cninv*net.tr_targets; if nargout >= 2 % Predict error bar ndata = size(x, 1); sigsq = (ones(ndata, 1) * gpcovarp(net, x(1,:), x(1,:))) ... - sum((ktest*cninv).*ktest, 2); end