Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/gperr.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [e, edata, eprior] = gperr(net, x, t) %GPERR Evaluate error function for Gaussian Process. % % Description % E = GPERR(NET, X, T) takes a Gaussian Process data structure NET % together with a matrix X of input vectors and a matrix T of target % vectors, and evaluates the error function E. Each row of X % corresponds to one input vector and each row of T corresponds to one % target vector. % % [E, EDATA, EPRIOR] = GPERR(NET, X, T) additionally returns the data % and hyperprior components of the error, assuming a Gaussian prior on % the weights with mean and variance parameters PRMEAN and PRVARIANCE % taken from the network data structure NET. % % See also % GP, GPCOVAR, GPFWD, GPGRAD % % Copyright (c) Ian T Nabney (1996-2001) errstring = consist(net, 'gp', x, t); if ~isempty(errstring); error(errstring); end cn = gpcovar(net, x); edata = 0.5*(sum(log(eig(cn, 'nobalance'))) + t'*inv(cn)*t); % Evaluate the hyperprior contribution to the error. % The hyperprior is Gaussian with mean pr_mean and variance % pr_variance if isfield(net, 'pr_mean') w = gppak(net); m = repmat(net.pr_mean, size(w)); if size(net.pr_mean) == [1 1] eprior = 0.5*((w-m)*(w-m)'); e2 = eprior/net.pr_var; else wpr = repmat(w, size(net.pr_mean, 1), 1)'; eprior = 0.5*(((wpr - m').^2).*net.index); e2 = (sum(eprior, 1))*(1./net.pr_var); end else e2 = 0; eprior = 0; end e = edata + e2;