Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/gpcovarf.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function covf = gpcovarf(net, x1, x2) %GPCOVARF Calculate the covariance function for a Gaussian Process. % % Description % % COVF = GPCOVARF(NET, X1, X2) takes a Gaussian Process data structure % NET together with two matrices X1 and X2 of input vectors, and % computes the matrix of the covariance function values COVF. % % See also % GP, GPCOVAR, GPCOVARP, GPERR, GPGRAD % % Copyright (c) Ian T Nabney (1996-2001) errstring = consist(net, 'gp', x1); if ~isempty(errstring); error(errstring); end if size(x1, 2) ~= size(x2, 2) error('Number of variables in x1 and x2 must be the same'); end n1 = size(x1, 1); n2 = size(x2, 1); beta = diag(exp(net.inweights)); % Compute the weighted squared distances between x1 and x2 z = (x1.*x1)*beta*ones(net.nin, n2) - 2*x1*beta*x2' ... + ones(n1, net.nin)*beta*(x2.*x2)'; switch net.covar_fn case 'sqexp' % Squared exponential covf = exp(net.fpar(1) - 0.5*z); case 'ratquad' % Rational quadratic nu = exp(net.fpar(2)); covf = exp(net.fpar(1))*((ones(size(z)) + z).^(-nu)); otherwise error(['Unknown covariance function ', net.covar_fn]); end