Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/gmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function mix = gmm(dim, ncentres, covar_type, ppca_dim) %GMM Creates a Gaussian mixture model with specified architecture. % % Description % MIX = GMM(DIM, NCENTRES, COVARTYPE) takes the dimension of the space % DIM, the number of centres in the mixture model and the type of the % mixture model, and returns a data structure MIX. The mixture model % type defines the covariance structure of each component Gaussian: % 'spherical' = single variance parameter for each component: stored as a vector % 'diag' = diagonal matrix for each component: stored as rows of a matrix % 'full' = full matrix for each component: stored as 3d array % 'ppca' = probabilistic PCA: stored as principal components (in a 3d array % and associated variances and off-subspace noise % MIX = GMM(DIM, NCENTRES, COVARTYPE, PPCA_DIM) also sets the % dimension of the PPCA sub-spaces: the default value is one. % % The priors are initialised to equal values summing to one, and the % covariances are all the identity matrix (or equivalent). The centres % are initialised randomly from a zero mean unit variance Gaussian. % This makes use of the MATLAB function RANDN and so the seed for the % random weight initialisation can be set using RANDN('STATE', S) where % S is the state value. % % The fields in MIX are % % type = 'gmm' % nin = the dimension of the space % ncentres = number of mixture components % covartype = string for type of variance model % priors = mixing coefficients % centres = means of Gaussians: stored as rows of a matrix % covars = covariances of Gaussians % The additional fields for mixtures of PPCA are % U = principal component subspaces % lambda = in-space covariances: stored as rows of a matrix % The off-subspace noise is stored in COVARS. % % See also % GMMPAK, GMMUNPAK, GMMSAMP, GMMINIT, GMMEM, GMMACTIV, GMMPOST, % GMMPROB % % Copyright (c) Ian T Nabney (1996-2001) if ncentres < 1 error('Number of centres must be greater than zero') end mix.type = 'gmm'; mix.nin = dim; mix.ncentres = ncentres; vartypes = {'spherical', 'diag', 'full', 'ppca'}; if sum(strcmp(covar_type, vartypes)) == 0 error('Undefined covariance type') else mix.covar_type = covar_type; end % Make default dimension of PPCA subspaces one. if strcmp(covar_type, 'ppca') if nargin < 4 ppca_dim = 1; end if ppca_dim > dim error('Dimension of PPCA subspaces must be less than data.') end mix.ppca_dim = ppca_dim; end % Initialise priors to be equal and summing to one mix.priors = ones(1,mix.ncentres) ./ mix.ncentres; % Initialise centres mix.centres = randn(mix.ncentres, mix.nin); % Initialise all the variances to unity switch mix.covar_type case 'spherical' mix.covars = ones(1, mix.ncentres); mix.nwts = mix.ncentres + mix.ncentres*mix.nin + mix.ncentres; case 'diag' % Store diagonals of covariance matrices as rows in a matrix mix.covars = ones(mix.ncentres, mix.nin); mix.nwts = mix.ncentres + mix.ncentres*mix.nin + ... mix.ncentres*mix.nin; case 'full' % Store covariance matrices in a row vector of matrices mix.covars = repmat(eye(mix.nin), [1 1 mix.ncentres]); mix.nwts = mix.ncentres + mix.ncentres*mix.nin + ... mix.ncentres*mix.nin*mix.nin; case 'ppca' % This is the off-subspace noise: make it smaller than % lambdas mix.covars = 0.1*ones(1, mix.ncentres); % Also set aside storage for principal components and % associated variances init_space = eye(mix.nin); init_space = init_space(:, 1:mix.ppca_dim); init_space(mix.ppca_dim+1:mix.nin, :) = ... ones(mix.nin - mix.ppca_dim, mix.ppca_dim); mix.U = repmat(init_space , [1 1 mix.ncentres]); mix.lambda = ones(mix.ncentres, mix.ppca_dim); % Take account of additional parameters mix.nwts = mix.ncentres + mix.ncentres*mix.nin + ... mix.ncentres + mix.ncentres*mix.ppca_dim + ... mix.ncentres*mix.nin*mix.ppca_dim; otherwise error(['Unknown covariance type ', mix.covar_type]); end