Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/gbayes.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [g, gdata, gprior] = gbayes(net, gdata) %GBAYES Evaluate gradient of Bayesian error function for network. % % Description % G = GBAYES(NET, GDATA) takes a network data structure NET together % the data contribution to the error gradient for a set of inputs and % targets. It returns the regularised error gradient using any zero % mean Gaussian priors on the weights defined in NET. In addition, if % a MASK is defined in NET, then the entries in G that correspond to % weights with a 0 in the mask are removed. % % [G, GDATA, GPRIOR] = GBAYES(NET, GDATA) additionally returns the data % and prior components of the error. % % See also % ERRBAYES, GLMGRAD, MLPGRAD, RBFGRAD % % Copyright (c) Ian T Nabney (1996-2001) % Evaluate the data contribution to the gradient. if (isfield(net, 'mask')) gdata = gdata(logical(net.mask)); end if isfield(net, 'beta') g1 = gdata*net.beta; else g1 = gdata; end % Evaluate the prior contribution to the gradient. if isfield(net, 'alpha') w = netpak(net); if size(net.alpha) == [1 1] gprior = w; g2 = net.alpha*gprior; else if (isfield(net, 'mask')) nindx_cols = size(net.index, 2); nmask_rows = size(find(net.mask), 1); index = reshape(net.index(logical(repmat(net.mask, ... 1, nindx_cols))), nmask_rows, nindx_cols); else index = net.index; end ngroups = size(net.alpha, 1); gprior = index'.*(ones(ngroups, 1)*w); g2 = net.alpha'*gprior; end else gprior = 0; g2 = 0; end g = g1 + g2;